POW 2016-10 Factorization
 수리과학과 2014학번 이상민

Suppose that A is an $n \times n$ matrix with integer entries and $\operatorname{det} A=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$ for primes $p_{1}, p_{2}, \cdots p_{k}$ and positive integers $e_{1}, e_{2}, \cdots e_{k}$. Prove that there exist $n \times n$ matrices $B_{1}, B_{2}, \cdots B_{k}$ with integer entries such that $A=B_{1} B_{2} \cdots B_{k}$ and $\operatorname{det} B_{i}=p_{i}^{e_{i}}$ ($i=1,2, \cdots k$)

Sol)

It is enough to prove this lemma.
Lemma: If A is $n \times n$ matrix with integer entries and $\operatorname{det} A=x y$, then there exist two matrices X, Y with integer entries such that $A=X Y, \operatorname{det} X=x$ and $\operatorname{det} Y=y$.
pf) Let $A=U D V$ be the Smith Normal Form of A, where D is diagonal, U and V are both unimodular. All matrices have integer entries. Since $\operatorname{det} D=x y$ there exists diagonal integer matrices D_{1}, D_{2} s.t. $D=D_{1} D_{2}$ and $\operatorname{det} D_{1}=x, \operatorname{det} D_{2}=y$ So let $X=U D_{1}$ and $Y=D_{2} V$ then $A=U D V=X Y$.

