POW 2016-10 Factorization 수리과학과 2014학번 이상민

Suppose that A is an $n \times n$ matrix with integer entries and det $A = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$ for primes $p_1, p_2, \cdots p_k$ and positive integers $e_1, e_2, \cdots e_k$. Prove that there exist $n \times n$ matrices $B_1, B_2, \cdots B_k$ with integer entries such that $A = B_1 B_2 \cdots B_k$ and det $B_i = p_i^{e_i}$ $(i = 1, 2, \cdots k)$

Sol)

It is enough to prove this lemma.

Lemma: If A is $n \times n$ matrix with integer entries and det A = xy, then there exist two matrices X, Y with integer entries such that A = XY, det X = x and det Y = y.

pf) Let A = UDV be the Smith Normal Form of A, where D is diagonal, U and V are both unimodular. All matrices have integer entries. Since $\det D = xy$ there exists diagonal integer matrices D_1, D_2 s.t. $D = D_1D_2$ and $\det D_1 = x$, $\det D_2 = y$ So let $X = UD_1$ and $Y = D_2V$ then A = UDV = XY.