Tag Archives: 이종원

Solution: 2015-16 Complex integral

Evaluate the following integral for \( z \in \mathbb{C}^+ \).\[\frac{1}{2\pi} \int_{-2}^2 \log (z-x) \sqrt{4-x^2} dx.\]

The best solution was submitted by Lee, Jongwon (이종원, 수리과학과 2014학번). Congratulations!

Here is his solution of problem 2015-16.

Alternative solutions were submitted by 최인혁 (2015학번, +2), 박훈민 (수리과학과 2013학번, +2), 박성혁/이경훈 (수리과학과 2014학번, +2).

GD Star Rating
loading...

Solution: 2015-13 Minimum

Find the minimum value of
\[
\int_{\mathbb{R}} f(x) \log f(x) dx
\]
among functions \(f: \mathbb{R} \rightarrow \mathbb{R}^+ \cup \{ 0 \}\) that satisfy the condition
\[
\int_{\mathbb{R}} f(x) dx = \int_{\mathbb{R}} x^2 f(x) dx = 1.
\]

The best solution was submitted by Lee, Jongwon (이종원, 수리과학과 2014학번). Congratulations!

Here is his solution of problem 2015-13.

Alternative solutions were submitted by 김경석 (2015학번, +3), 김재준 (2014학번, +3), 김희주 (2015학번, +2), 박성혁 (수리과학과 2014학번, +2), 박훈민 (수리과학과 2013학번, +3), 신준형 (2015학번, +3), 오동우 (2015학번, +2), 이신영 (물리학과 2012학번, +2), 이영민 (수리과학과 2012학번, +2), 이정환 (2015학번, +3), 장기정 (수리과학과 2014학번, +2), 최인혁 (2015학번, +2), Luis F. Abanto-Leon (+2), 이시우 (포항공대 수학과 2013학번, +3). Two incorrect solutions (L.S.M., H.I.S.) were submitted.

GD Star Rating
loading...

Concluding 2015 Spring

이수철 (장려상), 이종원 (최우수상), 이창옥 교수 (학과장), 김기현 (우수상), 엄태현 (우수상), 엄상일 교수

이수철 (장려상), 이종원 (최우수상), 이창옥 교수 (학과장), 김기현 (우수상), 엄태현 (우수상), 엄상일 교수

Thanks all for participating POW actively. Here’s the list of winners:

  • 1st prize (Gold): Lee, Jongwon (이종원), 수리과학과 2014학번.
  • 2nd prize (Silver): Kim, Kihyun (김기현), 수리과학과 2012학번.
  • 2nd prize (Silver): Chin, Wooyoung (진우영), 수리과학과 2012학번.
  • 2nd prize (Silver): Eom, Tae Hyun (엄태현), 수리과학과 2012학번.
  • 3rd prize (Bronze): Lee, Su Cheol (이수철), 수리과학과 2012학번.

이종원 (수리과학과 2014학번) 38
김기현 (수리과학과 2012학번) 37
진우영 (수리과학과 2012학번) 37
엄태현 (수리과학과 2012학번) 37
이수철 (수리과학과 2012학번) 36
고경훈 (2015학번) 27
오동우 (2015학번) 23
정성진 (수리과학과 2013학번) 21
최인혁 (2015학번) 21
이명재 (수리과학과 2012학번) 18
이영민 (수리과학과 2012학번) 18
함도규 (2015학번) 18
김경석 (2015학번) 15
장기정 (수리과학과 2014학번) 12
박훈민 (수리과학과 2013학번) 9
최두성 (수리과학과 2011학번) 7
유찬진 (2015학번) 6
국윤범 (2015학번) 5
박성혁 (수리과학과 2014학번) 5
이상민 (수리과학과 2014학번) 5
김기택 (2015학번) 4
김동률 (2015학번) 3
김동철 (수리과학과 2013학번) 3
신준형 (2015학번) 3
윤준기 (수리과학과 2014학번) 3
이병학 (수리과학과 2013학번) 3
홍혁표 (수리과학과 2013학번) 3
Muhammadfiruz Hassnov (2014학번) 3
윤지훈 (수리과학과 2012학번) 2

GD Star Rating
loading...

Solution: 2015-11 Limit

Does \(\frac{1}{n \sin n}\) converge as \(n\) goes to infinity?

The best solution was submitted by Lee, Jongwon (이종원, 수리과학과 2014학번). Congratulations!

Here is his solution of problem 2015-11.

Alternative solutions were submitted by 고경훈 (2015학번, +3), 김기현 (수리과학과 2012학번, +3), 신준형 (2015학번, +3), 엄태현 (수리과학과 2012학번, +3), 오동우 (2015학번, +3), 이수철 (수리과학과 2012학번, +3), 진우영 (수리과학과 2012학번, +3), 함도규 (2015학번, +3), 이상민 (수리과학과 2014학번, +2), 이영민 (수리과학과 2012학번, +2). One incorrect solution (KDR) was submitted.

GD Star Rating
loading...

Solution: 2015-9 Sum of squares

Let \(n\ge 1\) and \(a_0,a_1,a_2,\ldots,a_{n}\) be non-negative integers. Prove that if \[ N=\frac{a_0^2+a_1^2+a_2^2+\cdots+a_{n}^2}{1+a_0a_1a_2\cdots a_{n}}\] is an integer, then \(N\) is the sum of \(n\) squares of integers.

The best solution was submitted by Lee, Jongwon (이종원, 수리과학과 2014학번). Congratulations!

Here is his solution of problem 2015-9.

Alternative solutions were submitted by 김기현 (수리과학과 2012학번, +3), 엄태현 (수리과학과 2012학번, +3), 이수철 (수리과학과 2012학번, +3), 진우영 (수리과학과 2012학번, +3), 함도규 (2015학번, +3), 윤지훈 (2012학번, +2). One incorrect solution was submitted (YSC).

GD Star Rating
loading...

Solution: 2015-1 Equal sums

Let \( A\) be a set of \(n\ge 2\) odd integers. Prove that there exist two distinct subsets \(X\), \(Y\) of \(A\) such that \[ \sum_{x\in X} x\equiv\sum_{y\in Y}y \pmod{2^n}.\]

The best solution was submitted by 이종원 (수리과학과 2014학번). Congratulations!

Here is his solution of problem 2015-1.

Alternative solutions were submitted by 고경훈 (2015학번, +3), 김경석 (2015학번, +3), 김기현 (2012학번, +3), 김동철 (2013학번, +3), 배형진 (마포고 1학년, +2), 어수강 (서울대 수리과학부 대학원생, +3), 엄태현 (2012학번, +3), 오동우 (2015학번, +3), 유찬진 (2015학번, +3), 윤성철 (홍익대 수학교육과, +3), 이명재 (수리과학과 2012학번, +3), 이병학 (2013학번, +3), 이상민 (수리과학과 2014학번, +3), 이수철 (2012학번, +3), 이시우 (POSTECH 수학과 2013학번, +3), 이영민 (2012학번, +3), 장기정 (수리과학과 2014학번, +3), 정성진 (2013학번, +3), 진우영 (수리과학과 2012학번, +3), 최두성 (수리과학과 2011학번, +3), 최인혁 (2015학번, +3), Muhammadfiruz Hassnov (2014학번, +3).

GD Star Rating
loading...

Concluding 2014 Spring

Thanks all for participating POW actively. Here’s the list of winners:

  • 1st prize (Gold): Lee, Jongwon (이종원) – 2014학번
  • 2nd prize (Silver): Jeong, Seongjin (정성진) – 수리과학과 2013학번
  • 2nd prize (Silver): Jang, Kijoung (장기정) – 2014학번
  • 4th prize: Hwang, Sungho (황성호) – 수리과학과 2013학번
  • 5th prize: Chae, Seok Joo (채석주) – 수리과학과 2013학번

이종원 40
정성진 39
장기정 39
황성호 38
채석주 29
이영민 25
박훈민 18
조준영 17
김경석 17
어수강 16
박경호 15
윤성철 9
장경석 9
김일희 8
안현수 6
오동우 6
정진야 6
이규승 6
Zhang Qiang 5
이시우 5
한대진 5
남재현 5
김범수 4
김정민 4
권현우 3
김동석 3
김은혜 3
김찬민 3
엄문용 3
이상철 3
이주호 3
전한울 3
심병수 3
이승훈 3
배형진 3
서진솔 2
조남경 2
김경민 2
서웅찬 2

GD Star Rating
loading...

Solution: 2014-08 Two positive integers

Let \(a\), \(b\) be distinct positive integers. Prove that there exists a prime \(p\) such that when dividing both \(a\) and \(b\) by \(p\), the remainder of \(a\) is less than the remainder of \(b\).

The best solution was submitted by 이종원 (2014학번). Congratulations!

Alternative solutions were submitted by 황성호 (+3), 정성진(+2), 박훈민 (+2). There were a few incorrect submissions (KSJ, JKJ, KDS, AHS, KKS, PKH).

GD Star Rating
loading...

Solution: 2014-04 Integer pairs

Prove that there exist infinitely many pairs of positive integers \( (m, n) \) satisfying the following properties:

(1) gcd\( (m, n) = 1 \).

(2) \((x+m)^3 = nx\) has three distinct integer solutions.

The best solution was submitted by 이종원. Congratulations!

Alternative solutions were submitted by 김경석 (+3), 김은혜 (+3), 김일희 (+3), 김찬민 (+3), 박훈민 (+3), 안현수 (+3), 어수강 (+3), 윤성철 (+3), 이영민 (+3), 장경석 (+3), 장기정 (+3), 정성진 (+3), 조준영 (+3), 채석주 (+3), 황성호 (+3), 박경호 (+2), 조남경 (+2). An incorrect solutions was submitted by N.J.H. (Some initials here might have been improperly chosen.)

GD Star Rating
loading...