POW 2015-11

2014**** Lee, Jongwon

There always exists an integer $n_{k} \in\left[2 k \pi+\frac{\pi}{6}, 2 k \pi+\frac{5 \pi}{6}\right]$ for all $k \in \mathbb{N}$, so that $\frac{1}{\left|n_{k} \sin n_{k}\right|} \leq \frac{2}{\left|n_{k}\right|} \rightarrow 0$.

However, using continued fraction, or by referring to Hurwitz's theorem, there exists a sequence of reduced fractions $\left\{\frac{m_{k}}{l_{k}}\right\}$ such that $\left|\frac{m_{k}}{l_{k}}-2 \pi\right|<\frac{1}{l_{k}^{2}}$. But then, we have

$$
\frac{1}{\left|m_{k} \sin m_{k}\right|}=\frac{1}{\left|m_{k} \sin \left(m_{k}-2 l_{k} \pi\right)\right|}>\frac{1}{\left|m_{k}\left(m_{k}-2 l_{k} \pi\right)\right|}>\frac{l_{k}}{m_{k}} \rightarrow \frac{1}{2 \pi}
$$

proving that $\frac{1}{n \sin n}$ does not converge.

