POW 2015-1

2014**** Lee, Jongwon

Let $\omega=e^{2 \pi i / 2^{n}}$ be the primitive 2^{n}-th root of unitiy. Also, for a subset X of A, define S_{X} as $\sum_{x \in X} x$. If S_{X} are different modulo 2^{n} for all subsets X, since there are 2^{n} subsets in total, we have

$$
\prod_{a \in A}\left(1+\omega^{a}\right)=\sum_{X \subseteq A} \omega^{S_{X}}=\sum_{i=0}^{2^{n}-1} \omega^{i}=0
$$

so that $1+\omega^{a}=0$ for some $a \in A$. But this implies that $a \equiv 2^{n-1}\left(\bmod 2^{n}\right)$, contradicting that a is odd.

