KAIST POW 2014-04

20140446 Lee, Jongwon

Solution. We show that $(m, n)=\left(t^{2}+t,\left(t^{2}+t+1\right)^{3}\right)$ satisfies the problem where t is any positive integer greater than 1 . Clearly, there are infinitely many of them, m, n are positive, and $\operatorname{gcd}(m, n)=1$ because $\operatorname{gcd}\left(t^{2}+t, t^{2}+t+1\right)=1$. Also,

$$
(x+m)^{3}-n x=(x-1)\left(x-t^{3}\right)\left(x+(t+1)^{3}\right)
$$

and since $1, t^{3},-(t+1)^{3}$ are distinct integers, this completes the proof.

