POW 2014-08

2014**** Lee, Jongwon

The following is a theorem by Sylvester and Schur.
Theorem ([1]) If n, k are positive integers satisfying $n>k$, then, in the set of integers $n, n+1, n+2, \ldots, n+k-1$, there is a number containing a prime divisor greater than k.

Back to the main problem,
Solution Let $x \% y$ denote the remainder after division of x by y. First, if $a<b$, we can take a prime p greater than b, so that $a \% p=a<b=b \%$.

Secondly, if $a \geq 2 b$, according to the theorem of Sylvester and Schur, among $a-b+1, a-b+2, \ldots, a$, there is a number $a-t$ containing a prime divisor p such that $0 \leq t<b<p$. But then, $a \% p=t<b=b \% p$.

Lastly, if $2 b>a>b$, according to the theorem of Sylvester and Schur, among $b+1, b+2, \ldots, a$ there is a number $b+t$ containing a prime divisor p such that $1 \leq t \leq a-b<p$. Again, since $a \equiv a-b+b \equiv a-b-t(\bmod p)$, we have $a \% p=a-b-t<p-t=b \% p$.

Reference

[1] P. Erdős, "A Theorem of Sylvester and Schur". Journal of the London Mathematical Society, 9 (1934), pp. 282-288.

