POW 2015-13

$$
2014^{* * * *} \text { Lee, Jongwon }
$$

Let $g(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$ be the normal distribution with mean 0 and standard deviation 1. Also, for an arbitrary nonnegative number t, consider $h(y)=$ $t \log y-y$. Since $h^{\prime}(y)=\frac{t}{y}-1$, it is easy to see that $h(y) \leq h(t)=t \log t-t$. Then, for all $x \in \mathbb{R}$, we have

$$
f(x) \log g(x)-g(x) \leq f(x) \log f(x)-f(x)
$$

Integrating both sides, since $\int f(x) d x=\int g(x) d x=1$, we have

$$
\begin{aligned}
\int f(x) \log f(x) d x & \geq \int f(x) \log g(x) d x \\
& =\int f(x)\left(-\frac{1}{2} \log 2 \pi-\frac{x^{2}}{2}\right) \\
& =-\frac{1}{2} \log 2 \pi-\frac{1}{2}
\end{aligned}
$$

The equality holds obviously iff $f=g$.

