Category Archives: solution

Solution: 2018-06 Product of diagonals

Let \(A_1,A_2,A_3,\ldots,A_n\) be the vertices of a regular \(n\)-gon on the unit circle. Evaluate \(\prod_{i=2}^n A_1A_i\). (Here, \(A_1A_i\) denotes the length of the line segment.)

The best solution was submitted by Taegyun Kim (김태균, 수리과학과 2016학번). Congratulations!

Here is his solution of problem 2018-06.

Alternative solutions were submitted by 권홍 (중앙대 물리학과, +3), 고성훈 (2018학번, +3), 김건우 (수리과학과 2017학번, +3), 이본우 (수리과학과 2017학번, +3), 이종원 (수리과학과 2014학번, +3), 채지석 (수리과학과 2016학번, +3), 최백규 (생명과학과 2016학번, +3), 하석민 (수리과학과 2017학번, +3), 한준호 (수리과학과 2015학번, +3).

GD Star Rating
loading...

Solution: 2018-05 Roulette

A gambler is playing roulette and betting $1 on black each time. The probability of winning $1 is 18/38, and the probability of losing $1 is 20/38. Find the probability that starting with $20 the player reaches $40 before losing the money.

The best solution was submitted by Jiseok Chae (채지석, 수리과학과 2016학번). Congratulations!

Here is his solution of problem 2018-05.

Alternative solutions were submitted by 고성훈 (2018학번, +3), 김건우 (수리과학과 2017학번, +3), 이종원 (수리과학과 2014학번, +3), 한준호 (수리과학과 2015학번, +3), 문정욱 (2018학번, +3), 이현우 (전산학부 대학원생, +3), 임동현 (전산학부 대학원생, +3), 이본우 (수리과학과 2017학번, +2).

GD Star Rating
loading...

Solution: 2018-04 An inequality

Let \(x_1,x_2,\ldots,x_n\) be reals such that \(x_1+x_2+\cdots+x_n=n\) and \(x_1^2+x_2^2+\cdots +x_n^2=n+1\). What is the maximum of \(x_1x_2+x_2x_3+x_3x_4+\cdots + x_{n-1}x_n+x_nx_1\)?

The best solution was submitted by Lee, Jongwon (이종원, 수리과학과 2014학번). Congratulations!

Here is his solution of problem 2018-04.

Alternative solutions were submitted by 이본우 (수리과학과 2017학번, +3), 채지석 (수리과학과 2016학번, +3), 고성훈 (2018학번, +2).

GD Star Rating
loading...

Solution: 2018-03 Integers from square roots

Find all integers \( n \) such that \( \sqrt{1} + \sqrt{2} + \dots + \sqrt{n} \) is an integer.

The best solution was submitted by Han, Junho (한준호, 수리과학과 2015학번). Congratulations!

Here is his solution of problem 2018-03.

Alternative solutions were submitted by 김태균 (수리과학과 2016학번, +3), 이본우 (수리과학과 2017학번, +3), 이종원 (수리과학과 2014학번, +3, solution), 채지석 (수리과학과 2016학번, +3), 최백규 (2016학번, +3), 최인혁 (물리학과 2015학번, +3), 김건우 (수리과학과 2017학번, +2). Two incorrect solutions were received.

GD Star Rating
loading...

Solution: 2018-02 Impossible to squeeze

For \(n\ge 1\), let \(f(x)=x^n+\sum_{k=0}^{n-1} a_k x^k \) be a polynomial with real coefficients. Prove that if \(f(x)>0\) for all \(x\in [-2,2]\), then \(f(x)\ge 4\) for some \(x\in [-2,2]\).

The best solution was submitted by Choi, Inhyeok (최인혁, 물리학과 2015학번). Congratulations!

Here is his solution of problem 2018-02.

Alternative solutions were submitted by 이본우 (수리과학과 2017학번, +3), 이시우 (포항공대 수학과 2013학번, +3), 이종원 (수리과학과 2014학번, +3), 채지석 (수리과학과 2016학번, +3), 하석민 (수리과학과 2017학번, +3), 한준호 (수리과학과 2015학번, +3), 김태균 (수리과학과 2016학번, +2), 이재우 (함양고등학교 3학년, +2).

GD Star Rating
loading...

Solution: 2018-01 Recurrence relation

Define a sequence \( \{ a_n \} \) by \( a_1 = a \) and
\[
a_n = \frac{2n-1}{n-1} a_{n-1} -1
\]
for \( n \geq 2 \). Find all real values of \( a \) such that \( \lim_{n \to \infty} a_n \) exists.

The best solution was submitted by Bonwoo Lee (이본우, 수리과학과 2017학번). Congratulations!

Here is his solution of problem 2018-01.

Alternative solutions were submitted by 강한필 (전산학부 2016학번, +3), 이시우 (포항공대 수학과 2013학번, +3), 이종원 (수리과학과 2014학번, +3), 채지석 (수리과학과 2016학번, +3), 최인혁 (물리학과 2015학번, +3), 한준호 (수리과학과 2015학번, +3), 고성훈 (2018학번, +2), 김태균 (수리과학과 2016학번, +2), 송교범 (고려대 수학과 2017학번, +2), 이재우 (함양고등학교 3학년, +2), 노우진 (물리학과 2015학번) 및 윤정인 (물리학과 2016학번) (+2). Two incorrect solutions were received.

GD Star Rating
loading...

Solution: 2017-22 Debugging

Let \(p\), \(q\), \(r\) be positive integers such that \(p,q\ge r\). Ada and Betty independently read all source codes of their programming project. Ada found \(p\) bugs and Betty found \(q\) bugs, including \(r\) bugs that Ada found. What is the expected number of remaining bugs that neither Ada nor Betty found?

The best solution was submitted by Huy Tùng Nguyễn (수리과학과 2016학번). Congratulations!

Here is his solution of problem 2017-22.

Alternative solutions were submitted by 최대범 (수리과학과 2016학번, +3), 김태균 (수리과학과 2016학번, +2), 유찬진 (수리과학과 2015학번, +2). One incorrect solution was received.

(This is the last problem of this semester. Thank you all for participating POW.)

GD Star Rating
loading...

Solution: 2017-21 Maclaurin series

Prove or disprove the following statement: There exists a function whose Maclaurin series converges at only one point.

The best solution was submitted by Kook, Yun Bum (국윤범, 수리과학과 2015학번). Congratulations!

Here is his solution of problem 2017-21.

Alternative solutions were submitted by 민찬홍 (중앙대학교사범대학부속고등학교 3학년, +3), 채지석 (수리과학과 2016학번, +3), 최대범 (수리과학과 2016학번, +3), 하석민 (2017학번, +3), Huy Tung Nguyen (수리과학과 2016학번, +3). Four incorrect solutions were submitted, mostly due to misunderstanding.

GD Star Rating
loading...

Solution: 2017-20 Convergence of a series

Determine whether or not the following infinite series converges. \[ \sum_{n=0}^{\infty} \frac{ 1 }{2^{2n}} \binom{2n}{n}.\]

The best solution was submitted by Lee, Bonwoo (이본우, 2017학번). Congratulations!

Here is his solution of problem 2017-20.

Alternative solutions were submitted by 고성훈 (+3), 국윤범 (수리과학과 2015학번, +3), 길현준 (인천과학고등학교 2학년, +3), 김태균 (수리과학과 2016학번, +3), 민찬홍 (중앙대학교사범대학부속고등학교 3학년, +3), 유찬진 (수리과학과 2015학번, +3), 이원웅 (건국대 수학과 2014학번, +3), 이준협 (하나고등학교, +3), 채지석 (2016학번, +3), 최대범 (수리과학과 2016학번, +3), 하석민 (2017학번, +3), Huy Tung Nguyen (수리과학과 2016학번, +3), 이준성 (상문고등학교 1학년, +3), 정경훈 (서울대학교 컴퓨터공학과, +3), Mirali Ahmadili & Saba Dzmanashvili (2017학번, +3).

GD Star Rating
loading...

Solution: 2017-19 Identity

For an integer \( p \), define
\[
f_p(n) = \sum_{k=1}^n k^p.
\]
Prove that
\[
\frac{1}{2} \sum_{n=1}^{\infty} \frac{f_{-1}(n)}{f_3(n)} + 2\sum_{n=1}^{\infty} \frac{f_{-1}(n)}{f_1(n)} = \sum_{n=1}^{\infty} \frac{(f_{-1}(n))^2}{f_1(n)}.
\]

The best solution was submitted by Kim, Taegyun (김태균, 수리과학과 2016학번). Congratulations!

Here is his solution of problem 2017-19.

Alternative solutions were submitted by 국윤범 (수리과학과 2015학번, +3), 길현준 (인천과학고등학교 2학년, +3), 민찬홍 (중앙대학교사범대학부속고등학교 3학년, +3), 유찬진 (수리과학과 2015학번, +3), 이본우 (2017학번, +3), 채지석 (2016학번, +3), 최대범 (수리과학과 2016학번, +3), Huy Tung Nguyen (수리과학과 2016학번, +3), 이재우 (함양고등학교 2학년, +2), 하석민 (2017학번, +2), Saba Dzmanashvili & Mirali Ahmadili  (2017학번, +2).

GD Star Rating
loading...