POW 2018-14 Forests and Planes

20160021 Hanpil Kang

Problem. Suppose that the edges of a graph G can be colored by 3 colors so that there is no monochromatic cycle. Prove or disprove that G has two planar subgraphs G_{1}, G_{2} such that $E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$.

Solution.

Suppose we have G which satisfies $\operatorname{girth}(G) \geq 6$ and G_{1} and G_{2} is planar subgraph of G. Since, G_{1} and G_{2} are subgraph of G, $\operatorname{girth}\left(G_{1}\right) \geq 6$ and $\operatorname{girth}\left(G_{2}\right) \geq 6$ also holds.

For any planar graph (possibly not connected) $v-e+f \geq 2$. $\operatorname{girth}(H) \leq 6$ implies either $\operatorname{girth}(H)=\infty$ or $6 f \leq 2 e$ since if there exists face, every face have larger than or equal to 6 edges, and edges are counted twice.
$\operatorname{girth}(H)=\infty$ gives $e \leq v-1$ and $6 \leq \operatorname{girth}(H)<\infty$ gives, $f \leq \frac{e}{3}, 2 \leq v-e+f \leq v-e+$ $\frac{e}{3}, e \leq \frac{3}{2}(v-2)$. So, girth $\left(G_{1}\right), \operatorname{girth}\left(G_{2}\right) \geq 6, E\left(G_{1}\right)+E\left(G_{2}\right) \leq 2 \times \frac{3}{2}(V(G)-2)=3 V(G)-6$ if $V(G) \leq 4$.
G can be colored by 3 colors implies that we can partition the edges of G as 3 disjoint spanning forest. If all of those are tree then $E(G)=3(V(G)-1)=3 V(G)-3 \geq 3 V(G)-6$, therefore G cannot be partitioned as two planar subgraphs.

Thus, It is sufficient to find graph G with following condition as counter-example:

- G is union of three disjoint spanning trees.
- $\operatorname{girth}(G) \leq 6$

We will construct a graph G with $V(G)=2 p^{2}, E(G)=p^{3}$ and $\operatorname{girth}(G) \leq 6$ for some prime p. ($p \geq 7$ will give $E(G) \leq 3 V(G)-3$, so we might find three disjoint spanning trees from this)
H_{p} is bipartite graph where $V(H)=A \cup B, A=\left\{(x, y)_{a} \mid 0 \leq x, y<p\right\}, B=\left\{(x, y)_{b} \mid 0 \leq\right.$ $x, y<p\}$. And we will add edges connecting two vertices $(i, j)_{a}$ and $(k,(i k+j) \bmod p)$ for all i, j, k with $0 \leq i, j, k<p$. This trivially does not give odd length cycle, and also cycle of length 4. Proof is as follows:

Assume 4 different points $\left(i_{1}, j_{1}\right)_{a},\left(i_{2}, j_{2}\right)_{a},\left(k_{1}, s_{1}\right)_{b},\left(k_{2}, s_{2}\right)_{b}$ forms a cycle.
Then, $s_{1} \equiv i_{1} k_{1}+j_{1} \equiv i_{2} k_{1}+j_{2}(\bmod p)$ and $s_{2} \equiv i_{1} k_{2}+j_{1} \equiv i_{2} k_{2}+j_{2}(\bmod p)$ Them $\left(i_{1}-i_{2}\right) k_{1} \equiv\left(j_{2}-j_{1}\right)(\bmod p)$ and $\left(i_{1}-i_{2}\right) k_{2} \equiv\left(j_{2}-j_{1}\right)(\bmod p)$
$i_{1}=i_{2}$ implies $j_{1}=j_{2}$ and it is contradiction to 4 different points. Therefore, $i_{1} \neq i_{2}$, $k_{1}=k_{2} \equiv\left(j_{2}-j_{1}\right)\left(i_{1}-i_{2}\right)^{-1}(\bmod p)$, which gives $s_{1}-s_{2} \equiv i_{1}\left(k_{1}-k_{2}\right) \equiv 0(\bmod p)$. This also leads to contradiction.

Suppose we choose all points with $(i-k) \equiv s-1, s, s+1(\bmod p)$ and make a subgraph. Then, There exists path $(i, j)_{a}-\left(i+s, i^{2}+s i+j\right)_{b}-(i+1, j-i-s)_{a}-\left(i+s+1, i^{2}+(s+1) i+j+1\right)_{b}$ $-(i, j+1)_{a}$ which means for any $i, j,(i, j)_{a}$ and $(i, j+1)_{a}$ is connected. $(i, *)_{a}$ is connected with $(i+1, *)_{a}$ and $(i, *)_{a}$ is connected with $(i+s, *)_{b} . g c d(s, p)=1$ will give make this subgraph to connect every vertices of G, and there are spanning tree of this subgraph. This is illustrated as Binary adjacency matrix below.

We will construct this graph at $p=11$. If we partition this graph with $(i-k) \equiv 0,1,2$ and $(i-k) \equiv 3,4,5$ and $(i-k) \equiv 6,7,8$; in each subgraph, there exist three disjoint spanning trees T_{1}, T_{2}, T_{3}.
$T_{1}+T_{2}+T_{3}$ is subgraph of H_{11} so, $\operatorname{girth}\left(T_{1}+T_{2}+T_{3}\right) \geq 6$.
This construction with graph $G=T_{1}+T_{2}+T_{3}$ with 242 vertices and 723 edges will let G colored by 3 colors so that there is no monochromatic cycle with property that G cannot be divided into two planar subgraph such that $E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$.

Binary adjacency matrix of graph H_{5}.
Edge is represented as 0 .
Four edges were chosen to show connectivity of $(3,2)_{a}$ and $(3,3)_{a}$

