POW 2018-10

2016 \qquad Chae Jiseok

May 21, 2018

Let \mathbf{E} be the event where three pieces form an acute triangle.
Consider the stick as the closed interval $[0,1]$ on the real line and x, y be two randomly chosen points on the interval.

We will first assume that $x<y$. Let a, b, and c be the lengths of three segments, then we without loss of generality have $a=x, b=y-x$, and $c=1-y$. Suppose that a, b, and c become the side lengths of an acute triangle. Let A be the angle opposite to the side with length a. Then by the law of cosines we have $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$ where we want $\cos A>0$ so that A is acute. That is, for the triangle to be acute, we should have $b^{2}+c^{2}>a^{2}$. For the same reason, we need the other two angles to be also acute, hence we also require $c^{2}+a^{2}>b^{2}$ and $a^{2}+b^{2}>c^{2}$.

Note that since b and c are both positive, we have $b c>0$, hence if we have $b^{2}+c^{2}>a^{2}$ then we also automatically have $b+c=\sqrt{(b+c)^{2}}>\sqrt{b^{2}+c^{2}}>\sqrt{a^{2}}=a$. Since a is also positive, we have $c a>0$ and $a b>0$ also. Thus by the same logic, if $c^{2}+a^{2}>b^{2}$ and $a^{2}+b^{2}>c^{2}$ we also have $c+a>b$ and $a+b>c$. Since $a+b>c, b+c>a$, and $c+a>b$ are the conditions for three line segments of length a, b, and c to form a triangle, we get that once a, b, and c satisfy the three inequalities $b^{2}+c^{2}>a^{2}, c^{2}+a^{2}>b^{2}$, and $a^{2}+b^{2}>c^{2}$ then it is provided that a, b, and c become the side lengths of a triangle.

Expressing the inequalities in terms of x and y and arranging the terms, we have

$$
\begin{align*}
& \mathrm{b}^{2}+\mathrm{c}^{2}>\mathrm{a}^{2} \Longleftrightarrow 1-2 \mathrm{y}-2 \mathrm{xy}+2 \mathrm{y}^{2}>0 \quad \Longleftrightarrow \quad \frac{1-2 \mathrm{y}+2 \mathrm{y}^{2}}{2 \mathrm{y}}>\mathrm{x} \tag{1}\\
& c^{2}+a^{2}>b^{2} \quad \Longleftrightarrow \quad 1-2 y>-2 x y \quad \Longleftrightarrow \quad \frac{1}{2-2 x}>y \tag{2}\\
& \mathrm{a}^{2}+\mathrm{b}^{2}>\mathrm{c}^{2} \quad \Longleftrightarrow \quad 2 x^{2}-2 x y>1-2 y \quad \Longleftrightarrow \quad \mathrm{y}>\frac{1-2 x^{2}}{2-2 x} \tag{3}
\end{align*}
$$

and plotting the regions defined by (1), (2), and (3) with $y>x$ we have the shaded region in the following figure. In the figure, $\left(1^{\prime}\right)$ indicates the boundary curve of the region corresponding to (1), (2') that of (2), and (3') that of (3).

Since no two angles of a triangle can be both obtuse, the boundary curves do not intersect inside the upper triangle. By substituting $(x, y)=(1-\tilde{y}, 1-\tilde{x})$ we can easily check that the
figure is symmetric along the line $x+y=1$. Also by substituting, we can see that the boundary curves of (1) and (2) intersect at $\left(\frac{1}{2}, 1\right),(2)$ and (3) at $\left(0, \frac{1}{2}\right)$, and (3) and (1) at $\left(\frac{1}{2}, \frac{1}{2}\right)$.

The common region of (1), (2), (3), and $y>x$ is the shaded region in the figure. Using the symmetry of (1) and (3) along the line $x+y=1$, we can compute the area of the shaded region as

$$
\begin{aligned}
& \frac{1}{2}-\int_{0}^{1 / 2}\left(1-\frac{1}{2-2 x}\right) \mathrm{d} x-2 \int_{0}^{1 / 2}\left(\frac{1-2 x^{2}}{2-2 x}-x\right) \mathrm{d} x \\
= & \frac{1}{2}-\frac{1}{2} \int_{0}^{1 / 2}\left(2-\frac{1}{1-x}\right) \mathrm{d} x-\int_{0}^{1 / 2}\left(2-\frac{1}{1-x}\right) \mathrm{d} x \\
= & -1+\frac{3}{2} \int_{0}^{1 / 2} \frac{1}{1-x} \mathrm{~d} x \\
= & -1+\frac{3}{2}[-\ln (1-x)]_{0}^{1 / 2} \\
= & -1+\frac{3}{2} \ln 2 .
\end{aligned}
$$

The region corresponding to the event where $x<y$ is the triangular region bounded by $x=0$, $y=1$, and $x=y$, which has area $1 / 2$. Therefore the probability of E occurring given that $x<y$ is

$$
P(E \mid x<y)=\frac{-1+(3 / 2) \ln 2}{1 / 2}=-2+3 \ln 2
$$

All of the logic up to this point can be applied to the case where $x>y$ with the role of x and y exchanged. Therefore we also have that

$$
P(E \mid x>y)=-2+3 \ln 2
$$

Since x and y are randomly chosen from the interval $[0,1]$, we know that $P(x=y)=0$ and $P(x<y)=P(x>y)=1 / 2$. Hence we obtain

$$
\begin{aligned}
P(\mathbf{E}) & =P(x<y) P(\mathbf{E} \mid x<y)+P(x=y) P(\mathbf{E} \mid x=y)+P(x>y) P(\mathbf{E} \mid x>y) \\
& =\frac{1}{2}(-2+3 \ln 2)+0+\frac{1}{2}(-2+3 \ln 2) \\
& =-2+3 \ln 2 .
\end{aligned}
$$

Therefore the probability that three pieces form an acute triangle is $-2+3 \ln 2$.

