POW 2018-11

2015xxxx Han, Junho

May 25, 2018

Fallacy

Problem. On a math exam, there was a question that asked for the largest angle of the triangle with sidelengths 21,41 , and 50 . A student obtained the correct answer as follows: Let x be the largest angle. Then,

$$
\sin x=\frac{50}{41}=1+\frac{9}{41} .
$$

Since $\sin 90^{\circ}=1$ and $\sin 12^{\circ} 40^{\prime} 49^{\prime \prime}=9 / 41$, the angle $x=90^{\circ}+12^{\circ} 40^{\prime} 49^{\prime \prime}=102^{\circ} 40^{\prime} 49^{\prime \prime}$. Find the triangle with the smallest area with integer sidelengths and possessing this property (that the wrong argument as above gives the correct answer).

Solution. Consider a trinalge with integer sidelengths $a \leq b \leq c$ and the largest angle θ. The above condition is equivalent to

$$
\theta=90^{\circ}+\sin ^{-1}\left(\frac{c}{b}-1\right) .
$$

This makes sense since $1 \leq \frac{c}{b}<\frac{a+b}{b} \leq 2$. Moreover, it is equivalent to

$$
\frac{c}{b}-1=\sin \left(\theta-90^{\circ}\right)=-\cos \theta=\frac{c^{2}-b^{2}-a^{2}}{2 a b}
$$

which is rephrased as

$$
a^{2}+(b-a)^{2}=(c-a)^{2},
$$

that is, $(x, y, z):=(a, b-a, c-a)$ forms a pythagorean triple. Note that the order of them is either $x<y<z$ or $y<x<z$. Now, let $A(x, y, z)$ be the area of this triangle. Then,

$$
\begin{aligned}
(2 A(x, y, z))^{2} & =a^{2} b^{2} \sin ^{2} \theta=a^{2} b^{2}\left(1-\cos ^{2} \theta\right)=a^{2} c(2 b-c) \\
& =x^{2}(x+z)(y+(x+y-z))>(\min \{x, y\})^{4} .
\end{aligned}
$$

First check that $(2 A(3,4,5))^{2}=432<5^{4}<720=(2 A(4,3,5))^{2}$. So, if $\min \{x, y\} \geq 5$, $A(x, y, z)>A(3,4,5)$. Since $\min \{x, y\} \geq 5$ for triples (x, y, z) other than $(3,4,5)$ or $(4,3,5)$, among all pythagorean triples, $A(3,4,5)$ is the smallest.

Therefore, the desired triangle is of sidelengths $3,7,8$.

