POW 2018-09

2014**** Lee, Jongwon

Let $a_{n}, a_{n-1}, \ldots, a_{0}$ be any positive integers and let $f(x)=a_{n} x^{n}+\cdots+a_{0}$. Firstly, we shall see that $S(f(10)) \leq f(1)$. Note that if $a_{i}<10$ for all i, then we have $S(f(10))=f(1)$.

The following is the usual algorithm for adding numbers:
Starting from $i=0$, if $a_{i} \geq 10$, then decrease a_{i} by 10 and increase a_{i+1} by 1 . Repeat this until a_{i} becomes less than 10 and then move onto next i.

Since every iteration decreases $f(1)$ by 9 , keeps $f(10)$ the same, and eventually all coefficients become <10, we have the desired result. Furthermore, from the algorithm, we have that $S(f(10))=f(1)$ if and only if $a_{i}<10$ for all i.

Back to the original problem, if $n=a_{n} a_{n-1} \cdots a_{0}$ and $f(x)=a_{n} x^{n}+\cdots+a_{0}$, we have $S\left(n^{r}\right)=$ $S\left(f(10)^{r}\right)$ and $S(n)^{r}=f(1)^{r}$. Applying the above paragraph with $f(x)^{r}$, we have that $S\left(n^{r}\right)=S(n)^{r}$ if and only if all coefficients of $f(x)^{r}$ are less than 10 .

I don't have a complete description of such (n, r) 's, but the condition excludes many possibilities as follows:

First, note that if $n=10^{k}$ for some k, then result holds for any r. Also the result hols for any n if $r=1$.

Now assume that $r>1$ and that there is some i with $a_{i} \geq 2$ or there are some $i \neq j$ with $a_{i}, a_{j} \geq 1$. If $r \geq 5$, then in the first case, we have $a_{i}^{r} \geq 32$, so it is impossible, and in the second case, we have $\binom{r}{2} a_{i}^{2} a_{j}^{r-2} \geq 10$, so it is impossible. Therefore, we must have $r \leq 4$.

Looking at the case $r=4$, if $a_{i} \geq 2$ for some i, then $a_{i}^{r} \geq 10$ so it is impossible. And if $a_{i}, a_{j}, a_{k} \geq 1$ for some distinct i, j, k, then $\binom{r}{r-2,1,1} a_{i}^{r-2} a_{j} a_{k} \geq 12$, so it is also impossible. Therefore, if $r=4$, we must have $n=10^{k}+10^{l}$ for some distinct k, l, or $n=10^{k}$ for some k.

If $r=3$, since $a_{i}^{3}<10$ for all i, we have $a_{i} \leq 2$ for all i. If $a_{i}=2$ for some i and $a_{j} \geq 1$ for some $j \neq i$, then we have $3 a_{i}^{2} a_{j} \geq 12$, which is impossible. Therefore, if $a_{i}=2$ for some i, then we must have $n=2 \times 10^{i}$. For the case where $a_{i} \leq 1$ for all i, the assertion of the result depends on some properties of the set $B=\left\{i: a_{i} \neq 0\right\}$. For example, it is great if $B+B+B$, as a multiset, does not contain duplicate elements.

If $r=2$, since $a_{i}^{2}<10$ for all i, we have $a_{i} \leq 3$ for all i. If $a_{i}=3$ for some i and $a_{j} \geq 2$ for some $j \neq i$, then $2 a_{i} a_{j} \geq 12$ so it is impossible. Therefore, if $a_{i}=3$ for some i, then $a_{j} \leq 1$ for all $j \neq i$. Other restrictions again depend on the set $B=\left\{i: a_{i} \neq 0\right\}$ and on the multiset $B+B$.

