POW 2018-09

2014^{****} Lee, Jongwon

Let $a_n, a_{n-1}, \ldots, a_0$ be any positive integers and let $f(x) = a_n x^n + \cdots + a_0$. Firstly, we shall see that $S(f(10)) \leq f(1)$. Note that if $a_i < 10$ for all *i*, then we have S(f(10)) = f(1).

The following is the usual algorithm for adding numbers:

Starting from i = 0, if $a_i \ge 10$, then decrease a_i by 10 and increase a_{i+1} by 1. Repeat this until a_i becomes less than 10 and then move onto next i.

Since every iteration decreases f(1) by 9, keeps f(10) the same, and eventually all coefficients become < 10, we have the desired result. Furthermore, from the algorithm, we have that S(f(10)) = f(1) if and only if $a_i < 10$ for all i.

Back to the original problem, if $n = a_n a_{n-1} \cdots a_0$ and $f(x) = a_n x^n + \cdots + a_0$, we have $S(n^r) = S(f(10)^r)$ and $S(n)^r = f(1)^r$. Applying the above paragraph with $f(x)^r$, we have that $S(n^r) = S(n)^r$ if and only if all coefficients of $f(x)^r$ are less than 10.

I don't have a *complete* description of such (n, r)'s, but the condition excludes many possibilities as follows:

First, note that if $n = 10^k$ for some k, then result holds for any r. Also the result hols for any n if r = 1.

Now assume that r > 1 and that there is some i with $a_i \ge 2$ or there are some $i \ne j$ with $a_i, a_j \ge 1$. If $r \ge 5$, then in the first case, we have $a_i^r \ge 32$, so it is impossible, and in the second case, we have $\binom{r}{2}a_i^2a_i^{r-2} \ge 10$, so it is impossible. Therefore, we must have $r \le 4$.

Looking at the case r = 4, if $a_i \ge 2$ for some i, then $a_i^r \ge 10$ so it is impossible. And if $a_i, a_j, a_k \ge 1$ for some distinct i, j, k, then $\binom{r}{r-2,1,1}a_i^{r-2}a_ja_k \ge 12$, so it is also impossible. Therefore, if r = 4, we must have $n = 10^k + 10^l$ for some distinct k, l, or $n = 10^k$ for some k.

If r = 3, since $a_i^3 < 10$ for all *i*, we have $a_i \le 2$ for all *i*. If $a_i = 2$ for some *i* and $a_j \ge 1$ for some $j \ne i$, then we have $3a_i^2a_j \ge 12$, which is impossible. Therefore, if $a_i = 2$ for some *i*, then we must have $n = 2 \times 10^i$. For the case where $a_i \le 1$ for all *i*, the assertion of the result depends on some properties of the set $B = \{i : a_i \ne 0\}$. For example, it is great if B + B + B, as a multiset, does not contain duplicate elements.

If r = 2, since $a_i^2 < 10$ for all i, we have $a_i \leq 3$ for all i. If $a_i = 3$ for some i and $a_j \geq 2$ for some $j \neq i$, then $2a_ia_j \geq 12$ so it is impossible. Therefore, if $a_i = 3$ for some i, then $a_j \leq 1$ for all $j \neq i$. Other restrictions again depend on the set $B = \{i : a_i \neq 0\}$ and on the multiset B + B.