POW 2018-08

May 5, 2018

WLOG assume $a_1 < \cdots < a_m$. And suppose that least common multiple of a_i, a_j is less or equal to N for $1 \le i, j \le m$. For $i \ge 1$, (a_i, a_{i+1}) divides $(a_{i+1} - a_i)$.

$$N \ge l.c.m(a_{i+1}, a_i) = \frac{a_i a_{i+1}}{(a_i, a_{i+1})} \ge \frac{a_i a_{i+1}}{a_{i+1} - a_i} \Rightarrow \frac{1}{a_i} - \frac{1}{a_{i+1}} \ge \frac{1}{N}$$
 (1)

Since $a_i \geq i$

$$\frac{1}{\left[\frac{m}{2}\right]} > \frac{1}{a_{[m/2]}} - \frac{1}{a_m} \ge \frac{m - \left[\frac{m}{2}\right]}{N} \Rightarrow N > \left[\frac{m}{2}\right] \left(m - \left[\frac{m}{2}\right]\right) = \left[\frac{m^2}{4}\right] \ge \left[\frac{4N}{4}\right] = N \qquad (2)$$

So contradiction.