Solution: 2023-09 Permuted sums of reciprocals

Let \(\mathbb{S}_n\) be the set of all permutations of \([n]=\{1,\dots, n\}\). For positive real numbers \(d_1,\dots, d_n\), prove \[ \sum_{\sigma\in \mathbb{S}_n} \frac{1}{ d_{\sigma(1)}(d_{\sigma(1)}+d_{\sigma(2)}) \dots (d_{\sigma(1)}+\dots + d_{\sigma(n)}) } = \frac{1}{d_1\dots d_n}.\]

The best solution was submitted by 신민서 (KAIST 수리과학과 20학번, +4). Congratulations!

Here is the best solution of problem 2023-09.

Other solutions were submitted by 권도현 (KAIST 수리과학과 22학번, +3), 김명규 (KAIST 전산학부 19학번, +3), 김준홍 (KAIST 수리과학과 20학번, +3), 김찬우 (연세대학교 수학과 22학번, +3), 박기윤 (KAIST 새내기과정학부 23학번, +3), 박준성 (KAIST 수리과학과 석박통합과정 22학번, +3),이명규 (KAIST 전산학부 20학번, +3), 채지석 (KAIST 수리과학과 석박통합과정 21학번, +3), Anar Rzayev (KAIST 전산학부 19학번, +3). James Hamilton Clerk (+3), Matthew Seok (+3).

GD Star Rating
loading...

Solution: 2023-08 Groups with a perfect commutator subgroup

Find a pair of nonisomorphic nonabelian groups so that their abelianizations are isomorphic and their commutator subgroups are perfect.

The best solution was submitted by 김찬우 (연세대학교 수학과 22학번, +4). Congratulations!

Here is the best solution of problem 2023-08.

Other solutions were submitted by 박기윤 (KAIST 새내기과정학부 23학번, +3), 이명규 (KAIST 전산학과 20학번, +3), Anar Rzayev (KAIST 전산학부 19학번, +2).

GD Star Rating
loading...

2023-09 Permuted sums of reciprocals

Let \(\mathbb{S}_n\) be the set of all permutations of \([n]=\{1,\dots, n\}\). For positive real numbers \(d_1,\dots, d_n\), prove \[ \sum_{\sigma\in \mathbb{S}_n} \frac{1}{ d_{\sigma(1)}(d_{\sigma(1)}+d_{\sigma(2)}) \dots (d_{\sigma(1)}+\dots + d_{\sigma(n)}) } = \frac{1}{d_1\dots d_n}.\]

GD Star Rating
loading...

Solution: 2023-07 An oscillatory integral

Suppose that \( f: [a, b] \to \mathbb{R} \) is a smooth, convex function, and there exists a constant \( t>0 \) such that \( f'(x) \geq t \) for all \( x \in (a, b) \). Prove that
\[
\left| \int_a^b e^{i f(x)} dx \right| \leq \frac{2}{t}.
\]

The best solution was submitted by Anar Rzayev (KAIST 전산학부 19학번, +4). Congratulations!

Here is the best solution of problem 2023-07.

Other solutions were submitted by 김찬우 (연세대학교 수학과 22학번, +3), 박기윤 (KAIST 새내기과정학부 23학번, +3), 박준성 (KAIST 수리과학과 석박통합과정 22학번, +3), 오현섭 (KAIST 수리과학과 박사과정 21학번, +3), 이명규 (KAIST 전산학과 20학번, +3), 최예준 (서울과학기술대학교 행정학과 21학번, +3), Matthew Seok (+3), James Hamilton Clerk (+3).

GD Star Rating
loading...

2023-07 An oscillatory integral

Suppose that \( f: [a, b] \to \mathbb{R} \) is a smooth, convex function, and there exists a constant \( t>0 \) such that \( f'(x) \geq t \) for all \( x \in (a, b) \). Prove that
\[
\left| \int_a^b e^{i f(x)} dx \right| \leq \frac{2}{t}.
\]

GD Star Rating
loading...

Solution: 2023-06 Golden ratio and a functionSolution:

Let \(\phi = \frac{1+\sqrt{5}}{2}\). Let \(f(1)=1\) and for \(n\geq 1\), let
\[ f(n+1) = \left\{\begin{array}{ll}
f(n)+2 & \text{ if } f(f(n)-n+1)=n \\
f(n)+1 & \text{ otherwise}.
\end{array}\right.\]
Prove that \(f(n) = \lfloor \phi n \rfloor\), and determine when \(f(f(n)-n+1)\neq n\) holds.

The best solution was submitted by 박기윤 (KAIST 새내기과정학부 23학번, +4). Congratulations!

Here is the best solution of problem 2023-06.

Other solutions were submitted by 김찬우 (연세대학교 수학과 22학번, +3), 이동하 (KAIST 새내기과정학부 23학번, +3), 최예준 (서울과학기술대학교 행정학과 21학번, +3), Matthew Seok (+2). Late solutions are not graded.

GD Star Rating
loading...