POW2023-21 A Limit Solution

Kangyeon Moon
KAIST 20220230, Dept. of Mathematical Sciences
riemann2357@kaist.ac.kr

November 19, 2023

We have

$$
\begin{aligned}
\left(1 \pm \frac{1}{x}\right)^{x} & =e^{x \log \left(1 \pm \frac{1}{x}\right)} \\
& =e^{ \pm 1-\frac{1}{2 x}+O\left(\frac{1}{x^{2}}\right)} \\
& =e^{ \pm 1}\left(1-\frac{1}{2 x}+O\left(\frac{1}{x^{2}}\right)\right)\left(1+O\left(\frac{1}{x^{2}}\right)\right) \\
& =e^{ \pm 1}-\frac{e^{ \pm 1}}{2 x}+O\left(\frac{1}{x^{2}}\right)
\end{aligned}
$$

as $x \rightarrow \infty$. Also,

$$
\begin{gathered}
n^{n}+(n-1)^{n-1} \leq \sum_{k=1}^{n} k^{k} \leq n^{n}+(n-1)^{n-1}+(n-2)^{n-2}+(n-3)^{n-3}+\cdots+1^{1} \\
\leq n^{n}+(n-1)^{n-1}+n^{n-2}+n \cdot n^{n-3}
\end{gathered}
$$

implies that

$$
\begin{aligned}
\sum_{k=1}^{n} k^{k} & =n^{n}\left(1+\left(1-\frac{1}{n}\right)^{n} \cdot \frac{1}{n-1}+O\left(\frac{1}{n^{2}}\right)\right) \\
& =n^{n}\left(1+\left(\frac{1}{e}+O\left(\frac{1}{n}\right)\right)\left(\frac{1}{n}+O\left(\frac{1}{n^{2}}\right)\right)+O\left(\frac{1}{n^{2}}\right)\right) \\
& =n^{n}\left(1+\frac{1}{e n}+O\left(\frac{1}{n^{2}}\right)\right)
\end{aligned}
$$

as $n \rightarrow \infty$. Thus by dividing, the given sequence is

$$
\begin{aligned}
& (n+2)\left(1+\frac{1}{n+1}\right)^{n+1}\left(1+\frac{1}{e(n+2)}+O\left(\frac{1}{n^{2}}\right)\right)\left(1-\frac{1}{e(n+1)}+O\left(\frac{1}{n^{2}}\right)\right) \\
& -(n+1)\left(1+\frac{1}{n}\right)^{n}\left(1+\frac{1}{e(n+1)}+O\left(\frac{1}{n^{2}}\right)\right)\left(1-\frac{1}{e n}+O\left(\frac{1}{n^{2}}\right)\right)
\end{aligned}
$$

which is

$$
(n+2)\left(e+\frac{e}{2(n+1)}+O\left(\frac{1}{n^{2}}\right)\right)\left(1+O\left(\frac{1}{n^{2}}\right)\right)-(n+1)\left(e+\frac{e}{2 n}+O\left(\frac{1}{n^{2}}\right)\right)\left(1+O\left(\frac{1}{n^{2}}\right)\right)
$$

and

$$
(n+2)\left(e+\frac{e}{2 n}+O\left(\frac{1}{n^{2}}\right)\right)-(n+1)\left(e+\frac{e}{2 n}+O\left(\frac{1}{n^{2}}\right)\right)=e+O\left(\frac{1}{n}\right) \rightarrow e
$$

as $n \rightarrow \infty$. Thus the limit is e.

