DEGREES OF A GRAPH

20238237 Lee Dohyeon

POW 2023-18

Problem

Find all integers $n \ge 8$ such that there exists a simple graph with n vertices whose degrees are as follows:

- 1. (n-4) vertices of the graph are with degrees $4, 5, 6, \ldots, n-2, n-1$, respectively.
- 2. The other 4 vertices are with degrees n 2, n 2, n 1, n 1, respectively.

Answer: 8,9

Solution:

Note that degrees of vertices of the complement of such graph are 0, 1, 2, ..., n-5, and 0, 0, 1, 1. For n = 8, 9, the complement of desired graphs are as follows :

For n > 9, there is no such graph exists.

Suppose there exists such graph G with n > 9 vertices. Then \overline{G} has three isolated vertices. Let H be a subgraph of \overline{G} with m = n - 3 vertices, excluding isolated vertices. Note that degrees of vertices of H are $1, 1, 1, 2, 3, \ldots, m - 2$ and m > 6. Let v_1, v_2, v_3 are vertices of H with degree 1 and w_1, w_2 are vertices of H with degree m - 3, m - 2, respectively.

Since w_2 is not adjacent to one vertices, at least two of v_1, v_2, v_3 are adjacent to w_2 . Say v_1, v_2 are adjacent to w_2 . Then, w_1 is not adjacent to v_1, v_2 and since w_1 is not adjacent to two vertices, w_1 is adjacent to v_3 . In addition, w_1, w_2 are adjacent to all other vertices, and adjacent each other.

Let $H' = H \setminus \{v_1, v_2, w_1, w_2, w_3\}$. Then, the number of vertices of H' is s = m - 5 = n - 8 > 1and degrees of vertices are $0, 1, \ldots, m - 6 = s - 1$, which is impossible since vertex of degree 0 is isolated, while vertex of degree s - 1 is adjacent to every other vertices.