POW 2023-20
 A sequence with small tail

$$
2018 \text { 김 기수 }
$$

November 17, 2023

1 Problem

Can we find a sequence $a_{i}, i=0,1,2, \ldots$ with the following property: for each given integer $n \geq 0$, we have

$$
\lim _{L \rightarrow \infty} \sum_{i=0}^{L} 2^{n i}\left|a_{i}\right| \leq 23^{(n+11)^{10}} \quad \text { and } \quad \lim _{L \rightarrow \infty} \sum_{i=0}^{L} 2^{n i} a_{i}=(-1)^{n} ?
$$

2 Solution

Yes. For integers $k \geq 0$ and $n \geq k$, define

$$
a_{k, n}=\left(\prod_{i=0}^{k-1} \frac{2^{i}+1}{2^{i}-2^{k}}\right) \cdot\left(\prod_{i=k+1}^{n} \frac{2^{i}+1}{2^{i}-2^{k}}\right)
$$

At $n=k$, the latter factor is interpreted as 1 , being an empty product. We claim that the limit $a_{k}=\lim _{n \rightarrow \infty} a_{k, n}$ exists for each k, and the sequence $\left\{a_{k}\right\}$ satisfies the given condition.

$2.1 a_{k, n}$ forms a solution to the linear system

Let us call the collection of equations $\lim _{L \rightarrow \infty} \sum_{i=0}^{L} 2^{n i} a_{i}=(-1)^{n}$ for all $n \geq 0$ by the grand linear system of countably many variables a_{i}, just for fun. Incidently, $a_{k, n}$ forms a solution to first few equations obtained from the grand linear system.
Proposition 2.1. Let $L \geq 0$ be an integer. For $0 \leq n \leq L$, the equation

$$
\sum_{k=0}^{L} 2^{n k} a_{k, L}=(-1)^{n}
$$

holds.
Proof. Omitted.

$2.2 a_{k}$ forms a solution to the grand linear system

Firstly, we claim that $a_{k, n}$ is convergent as $n \rightarrow \infty$ for every $k \geq 0$.
Lemma 2.2. For $0 \leq x \leq 1,1+x \leq e^{x} \leq 1+2 x$ holds.
Proof. Considering the series expansion $e^{x}=1+x+\sum_{n=2}^{\infty} \frac{x^{n}}{n!}$, the first inequality is well-known. For the second inequality, it suffices to observe that e^{x} is convex, and that $e^{1} \leq 1+2$ at $x=1$. For $0 \leq x \leq 1, x$ is expressed as $0 \cdot(1-x)+1 \cdot x$, and we have $e^{x} \leq(1-x) e^{0}+x e^{1}=1+\left(e^{1}-1\right) x \leq 1+2 x$.

Proposition 2.3. Let k, L, M be integers such that $M>L>k \geq 0$. Then the inequality

$$
\prod_{i=L+1}^{M} \frac{2^{i}+1}{2^{i}-2^{k}} \leq 1+8 \cdot \frac{2^{k}}{2^{L}}
$$

holds.
Proof. Firstly, we have

$$
\prod_{i=L+1}^{M} \frac{2^{i}+1}{2^{i}-2^{k}} \leq \exp \left(\sum_{i=L+1}^{M} \frac{2^{k}+1}{2^{i}-2^{k}}\right)
$$

holds, as $\frac{2^{i}+1}{2^{i}-2^{k}}=1+\frac{2^{k}+1}{2^{i}-2^{k}} \leq \exp \left(\frac{2^{k}+1}{2^{i}-2^{k}}\right)$ for each i, by lemma 2.2 ,
Next, we have

$$
\frac{1}{2^{i}-2^{k}}=\frac{1}{2^{i}}\left(1+\frac{2^{k}}{2^{i}-2^{k}}\right) \leq \frac{1}{2^{i}}\left(1+\frac{2^{k}}{2^{L+1}-2^{k}}\right)=\frac{1}{2^{i}} \cdot \frac{2^{L+1}}{2^{L+1}-2^{k}}
$$

for $i \geq L+1$, hence

$$
\sum_{i=L+1}^{M} \frac{2^{k}+1}{2^{i}-2^{k}} \leq\left(2^{k}+1\right) \cdot \frac{2^{L+1}}{2^{L+1}-2^{k}} \sum_{i=L+1}^{M} \frac{1}{2^{i}}
$$

As $\frac{2^{k}+1}{2^{k}} \leq 2, \frac{2^{L+1}}{2^{L+1}-2^{k}} \leq 2$, and $\sum_{i=L+1}^{M} \frac{1}{2^{i}} \leq \sum_{i=L+1}^{\infty} \frac{1}{2^{i}}=\frac{1}{2^{L}}$, we have an upper bound

$$
\sum_{i=L+1}^{M} \frac{2^{k}+1}{2^{i}-2^{k}} \leq 4 \cdot \frac{2^{k}}{2^{L}}
$$

By lemma 2.2, we have

$$
\exp \left(\sum_{i=L+1}^{M} \frac{2^{k}+1}{2^{i}-2^{k}}\right) \leq 1+8 \cdot \frac{2^{k}}{2^{L}}
$$

and deduce the conclusion.
Proposition 2.4. For $k \geq 0$, the sequence $\left\{a_{k, n}\right\}$ is monotone and bounded.

Proof. We have $a_{k, n+1}=\frac{2^{n+1}+1}{2^{n+1}-2^{k}} a_{k, n}$. As $\frac{2^{n+1}+1}{2^{n+1}-2^{k}}>1$ for $n \geq k,\left|a_{k, n}\right|$ is increasing and $a_{k, n}$ is monotone.

Applying proposition 2.3 for $M \rightarrow \infty$, we have

$$
\begin{aligned}
\left|a_{k, n}\right| & =\prod_{i=0}^{k-1} \frac{2^{i}+1}{2^{k}-2^{i}} \cdot \prod_{i=k+1}^{k+10} \frac{2^{i}+1}{2^{k}-2^{i}} \cdot \prod_{i=k+11}^{\infty} \frac{2^{i}+1}{2^{i}-2^{k}} \\
& \leq \prod_{i=0}^{k-1} \frac{2^{i}+1}{2^{k}-2^{i}} \cdot \prod_{i=k+1}^{k+10} \frac{2^{i}+1}{2^{k}-2^{i}} \cdot\left(1+8 \cdot \frac{2^{k}}{2^{k+10}}\right)
\end{aligned}
$$

where the bound is a finite expression.
Corollary 2.5. For $k \geq 0$, the sequence $\left\{a_{k, n}\right\}$ converges.
Denote this limit as $a_{k}=\lim _{n \rightarrow \infty} a_{k, n}$.
Proposition 2.6. For $k \geq 1$, we have an inequality

$$
\left|a_{k, k}\right| \leq \frac{2^{k(k+1) / 2}}{2^{(k-1)^{2}}}=\frac{1}{2} \cdot \frac{2^{5 k / 2}}{2^{k^{2} / 2}}
$$

Proof. Note that $a_{k, k}=\prod_{i=0}^{k-1} \frac{2^{i}+1}{2^{k}-2^{i}}$. Observe that

$$
\prod_{i=0}^{k-1}\left(2^{k}-2^{i}\right) \geq \prod_{i=0}^{k-1}\left(2^{k}-2^{k-1}\right)=2^{(k-1)^{2}}
$$

and

$$
\prod_{i=0}^{k-1}\left(2^{i}+1\right) \leq \prod_{i=0}^{k-1}\left(2^{i}+2^{i}\right)=2^{k(k+1) / 2}
$$

We deduce the conclusion by combining two inequalities.
Proposition 2.7. Let k, L, M be integers such that $M>L, k \geq 0$, and L is sufficiently greater than k. Then we have an inequality

$$
\left|a_{k, M}-a_{k, L}\right| \leq C \cdot \frac{2^{7 k / 2}}{2^{k^{2} / 2}} \cdot \frac{1}{2^{L}}
$$

for some constant C, where $C=4 e^{4}$ is sufficient.
Proof. We have

$$
\begin{aligned}
\left|a_{k, M}-a_{k, L}\right| & =\prod_{i=0}^{k-1} \frac{2^{i}+1}{2^{k}-2^{i}} \cdot \prod_{i=k+1}^{L} \frac{2^{i}+1}{2^{i}-2^{k}}\left(\prod_{i=L+1}^{M} \frac{2^{i}+1}{2^{i}-2^{k}}-1\right) \\
& \leq \frac{1}{2} \cdot \frac{2^{5 k / 2}}{2^{k^{2} / 2}} \cdot \prod_{i=k+1}^{L} \frac{2^{i}+1}{2^{i}-2^{k}} \cdot 8 \cdot \frac{2^{k}}{2^{L}} .
\end{aligned}
$$

As we might bound the product factor by a constant, we deduce the conclusion: a_{k} forms a solution to the grand linear system.

Proposition 2.8. Let $n \geq 0$ be an integer, $\varepsilon>0$ be a positive real number. There exists an integer $L_{0}=L(n, \varepsilon)$ such that, for every $L \geq L_{0}$ and $M>L$,

$$
\left|\sum_{k=0}^{L} 2^{n k} a_{k, M}-\sum_{k=0}^{L} 2^{n k} a_{k, L}\right| \leq \varepsilon
$$

Proof. We have

$$
\left|\sum_{k=0}^{L} 2^{n k} a_{k, M}-\sum_{k=0}^{L} 2^{n k} a_{k, L}\right| \leq \sum_{k=0}^{L} 2^{n k}\left|a_{k, M}-a_{k, L}\right|
$$

If L is sufficiently greater than k and $2 n+7$, we have an upper bound

$$
C \cdot \frac{1}{2^{L}} \sum_{k=0}^{L} \frac{2^{(n+7 / 2) k}}{2^{k^{2} / 2}}=C \cdot \frac{1}{2^{L}} \sum_{k=0}^{2 n+6} \frac{2^{(n+7 / 2) k}}{2^{k^{2} / 2}}+C \cdot \frac{1}{2^{L}} \sum_{k=2 n+7}^{L} \frac{2^{(n+7 / 2) k}}{2^{k^{2} / 2}}
$$

Observe that the first sum is constant with respect to L, and the terms in the latter sum is at most 1 , hence we have an upper bound of the form

$$
\frac{D}{2^{L}}+\frac{C \cdot L}{2^{L}}
$$

This upper bound converges to zero as $L \rightarrow \infty$.
Using the convergence of the finite sum $\sum_{k=0}^{L} 2^{n k} a_{k, M} \rightarrow \sum_{k=0}^{L} 2^{n k} a_{k}$ as $M \rightarrow \infty$, we have the following corollary.

Corollary 2.9. Let $n \geq 0$ be an integer, $\varepsilon>0$ be a positive real number. There exists an integer $L_{0}=L(n, \varepsilon)$ such that, for every $L \geq L_{0}$,

$$
\left|\sum_{k=0}^{L} 2^{n k} a_{k}-\sum_{k=0}^{L} 2^{n k} a_{k, L}\right| \leq \varepsilon
$$

As $\sum_{k=0}^{L} 2^{n k} a_{k, L}=(-1)^{n}$, we deduce the conclusion.
Corollary 2.10. For $n \geq 0, \lim _{L \rightarrow \infty} \sum_{k=0}^{L} 2^{n k} a_{k}=(-1)^{n}$.

$2.3 a_{k}$ satisfies the upper bound condition

With observed bounds for a_{k}, we can easily verify the sequence satisfying the given bound

$$
\lim _{L \rightarrow \infty} \sum_{k=0}^{L} 2^{n k}\left|a_{k}\right| \leq 23^{(n+11)^{10}}
$$

for every $n \geq 0$. Note that we have $\left|a_{k, k}\right| \leq \frac{2^{5 k / 2}}{2^{k^{2} / 2}}$ for $k \geq 1$, and $\prod_{i=k+1}^{\infty} \frac{2^{i}+1}{2^{i}-2^{k}} \leq$ $2 \cdot \prod_{i=k+2}^{\infty} \frac{2^{i}+1}{2^{i}-2^{k}} \leq 2 \cdot(1+2)=6$.

