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1 Problem
Can we find a sequence ai, i = 0, 1, 2, . . . with the following property: for each
given integer n ≥ 0, we have

lim
L→∞

L∑
i=0

2ni|ai| ≤ 23(n+11)10 and lim
L→∞

L∑
i=0

2niai = (−1)n?

2 Solution
Yes. For integers k ≥ 0 and n ≥ k, define

ak,n =

(
k−1∏
i=0

2i + 1

2i − 2k

)
·

(
n∏

i=k+1

2i + 1

2i − 2k

)
.

At n = k, the latter factor is interpreted as 1, being an empty product. We
claim that the limit ak = lim

n→∞
ak,n exists for each k, and the sequence {ak}

satisfies the given condition.

2.1 ak,n forms a solution to the linear system

Let us call the collection of equations lim
L→∞

∑L
i=0 2

niai = (−1)n for all n ≥ 0 by
the grand linear system of countably many variables ai, just for fun. Incidently,
ak,n forms a solution to first few equations obtained from the grand linear
system.

Proposition 2.1. Let L ≥ 0 be an integer. For 0 ≤ n ≤ L, the equation
L∑

k=0

2nkak,L = (−1)n

holds.

Proof. Omitted.
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2.2 ak forms a solution to the grand linear system
Firstly, we claim that ak,n is convergent as n → ∞ for every k ≥ 0.

Lemma 2.2. For 0 ≤ x ≤ 1, 1 + x ≤ ex ≤ 1 + 2x holds.

Proof. Considering the series expansion ex = 1+x+
∑∞

n=2
xn

n! , the first inequality
is well-known. For the second inequality, it suffices to observe that ex is convex,
and that e1 ≤ 1+ 2 at x = 1. For 0 ≤ x ≤ 1, x is expressed as 0 · (1− x) + 1 · x,
and we have ex ≤ (1− x)e0 + xe1 = 1 + (e1 − 1)x ≤ 1 + 2x.

Proposition 2.3. Let k, L,M be integers such that M > L > k ≥ 0. Then the
inequality

M∏
i=L+1

2i + 1

2i − 2k
≤ 1 + 8 · 2

k

2L

holds.

Proof. Firstly, we have

M∏
i=L+1

2i + 1

2i − 2k
≤ exp

(
M∑

i=L+1

2k + 1

2i − 2k

)

holds, as 2i+1
2i−2k

= 1 + 2k+1
2i−2k

≤ exp
(

2k+1
2i−2k

)
for each i, by lemma 2.2.

Next, we have

1

2i − 2k
=

1

2i

(
1 +

2k

2i − 2k

)
≤ 1

2i

(
1 +

2k

2L+1 − 2k

)
=

1

2i
· 2L+1

2L+1 − 2k

for i ≥ L+ 1, hence

M∑
i=L+1

2k + 1

2i − 2k
≤ (2k + 1) · 2L+1

2L+1 − 2k

M∑
i=L+1

1

2i
.

As 2k+1
2k

≤ 2, 2L+1

2L+1−2k
≤ 2, and

∑M
i=L+1

1
2i ≤

∑∞
i=L+1

1
2i = 1

2L
, we have an

upper bound
M∑

i=L+1

2k + 1

2i − 2k
≤ 4 · 2

k

2L
.

By lemma 2.2, we have

exp

(
M∑

i=L+1

2k + 1

2i − 2k

)
≤ 1 + 8 · 2

k

2L
,

and deduce the conclusion.

Proposition 2.4. For k ≥ 0, the sequence {ak,n} is monotone and bounded.
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Proof. We have ak,n+1 = 2n+1+1
2n+1−2k

ak,n. As 2n+1+1
2n+1−2k

> 1 for n ≥ k, |ak,n| is
increasing and ak,n is monotone.

Applying proposition 2.3 for M → ∞, we have

|ak,n| =
k−1∏
i=0

2i + 1

2k − 2i
·

k+10∏
i=k+1

2i + 1

2k − 2i
·

∞∏
i=k+11

2i + 1

2i − 2k

≤
k−1∏
i=0

2i + 1

2k − 2i
·

k+10∏
i=k+1

2i + 1

2k − 2i
·
(
1 + 8 · 2k

2k+10

)
,

where the bound is a finite expression.

Corollary 2.5. For k ≥ 0, the sequence {ak,n} converges.

Denote this limit as ak = lim
n→∞

ak,n.

Proposition 2.6. For k ≥ 1, we have an inequality

|ak,k| ≤
2k(k+1)/2

2(k−1)2
=

1

2
· 2

5k/2

2k2/2
.

Proof. Note that ak,k =
∏k−1

i=0
2i+1
2k−2i

. Observe that

k−1∏
i=0

(2k − 2i) ≥
k−1∏
i=0

(2k − 2k−1) = 2(k−1)2

and
k−1∏
i=0

(2i + 1) ≤
k−1∏
i=0

(2i + 2i) = 2k(k+1)/2.

We deduce the conclusion by combining two inequalities.

Proposition 2.7. Let k, L,M be integers such that M > L, k ≥ 0, and L is
sufficiently greater than k. Then we have an inequality

|ak,M − ak,L| ≤ C · 2
7k/2

2k2/2
· 1

2L
,

for some constant C, where C = 4e4 is sufficient.

Proof. We have

|ak,M − ak,L| =
k−1∏
i=0

2i + 1

2k − 2i
·

L∏
i=k+1

2i + 1

2i − 2k

(
M∏

i=L+1

2i + 1

2i − 2k
− 1

)

≤ 1

2
· 2

5k/2

2k2/2
·

L∏
i=k+1

2i + 1

2i − 2k
· 8 · 2

k

2L
.

As we might bound the product factor by a constant, we deduce the conclusion:
ak forms a solution to the grand linear system.
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Proposition 2.8. Let n ≥ 0 be an integer, ε > 0 be a positive real number.
There exists an integer L0 = L(n, ε) such that, for every L ≥ L0 and M > L,∣∣∣∣∣

L∑
k=0

2nkak,M −
L∑

k=0

2nkak,L

∣∣∣∣∣ ≤ ε.

Proof. We have∣∣∣∣∣
L∑

k=0

2nkak,M −
L∑

k=0

2nkak,L

∣∣∣∣∣ ≤
L∑

k=0

2nk|ak,M − ak,L|.

If L is sufficiently greater than k and 2n+ 7, we have an upper bound

C · 1

2L

L∑
k=0

2(n+7/2)k

2k2/2
= C · 1

2L

2n+6∑
k=0

2(n+7/2)k

2k2/2
+ C · 1

2L

L∑
k=2n+7

2(n+7/2)k

2k2/2
.

Observe that the first sum is constant with respect to L, and the terms in the
latter sum is at most 1, hence we have an upper bound of the form

D

2L
+

C · L
2L

.

This upper bound converges to zero as L → ∞.

Using the convergence of the finite sum
∑L

k=0 2
nkak,M →

∑L
k=0 2

nkak as
M → ∞, we have the following corollary.

Corollary 2.9. Let n ≥ 0 be an integer, ε > 0 be a positive real number. There
exists an integer L0 = L(n, ε) such that, for every L ≥ L0,∣∣∣∣∣

L∑
k=0

2nkak −
L∑

k=0

2nkak,L

∣∣∣∣∣ ≤ ε.

As
∑L

k=0 2
nkak,L = (−1)n, we deduce the conclusion.

Corollary 2.10. For n ≥ 0, lim
L→∞

∑L
k=0 2

nkak = (−1)n.

2.3 ak satisfies the upper bound condition
With observed bounds for ak, we can easily verify the sequence satisfying the
given bound

lim
L→∞

L∑
k=0

2nk|ak| ≤ 23(n+11)10

for every n ≥ 0. Note that we have |ak,k| ≤ 25k/2

2k2/2
for k ≥ 1, and

∏∞
i=k+1

2i+1
2i−2k

≤
2 ·
∏∞

i=k+2
2i+1
2i−2k

≤ 2 · (1 + 2) = 6.
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