Solution: 2024-21 The Realizability of Fundamental Group Homomorphisms

Prove or disprove that every homomorphism \( \pi_1(X) \to \pi_1(X)\) can be realized as the induced homomorphism of a continuous map \(X \to X\).

The best solution was submitted by 김준홍 (KAIST 수리과학과 석박통합과정, +4). Congratulations!

Here is the best solution of problem 2024-21.

Other solutions were submitted by 김찬우 (연세대학교 수학과 22학번, +3), 양준혁 (KAIST 수리과학과 20학번, +3).

GD Star Rating
loading...

Solution: 2024-20 Vanishing at infinity

Suppose that \( f: \mathbb{R} \to \mathbb{R} \) is a continuous function such that the sequence \( f(x), f(2x), f(3x), \dots \) converges to \( 0 \) for any \( x > 0 \). Prove or disprove that \[ \lim_{x \to \infty} f(x) = 0. \]

The best solution was submitted by 이명규 (KAIST 전산학부 20학번, +4). Congratulations!

Here is the best solution of problem 2024-20.

Other solutions were submitted by 김준홍 (KAIST 수리과학과 석박통합과정, +3), 김찬우 (연세대학교 수학과 22학번, +3), 노희윤 (KAIST 수리과학과 석박통합과정, +3), 양준혁 (KAIST 수리과학과 20학번, +3), 최정담 (KAIST 디지털인문사회과학부 석사과정, +3). There was an incorrect soultion submitted.

GD Star Rating
loading...

Solution: 2024-19 Stationary function

Let \(g(t): [0,+\infty) \to [0,+\infty)\) be a decreasing continuous function. Assume \(g(0)=1\), and for every \(s, t \geq 0 \) \[t^{11}g(s+t) \leq 2024 \; [g(s)]^2.\] Show that \(g(11) = g(12)\).

The best solution was submitted by 김준홍 (KAIST 수리과학과 석박통합과정, +4). Congratulations!

Here is the best solution of problem 2024-19.

Other solutions were submitted by 김찬우 (연세대학교 수학과 22학번, +3), 양준혁 (KAIST 수리과학과 20학번, +3), 이명규 (KAIST 전산학부 20학번, +3).

GD Star Rating
loading...

Solution: 2024-18 The Nonnegative Triple Sequence Challenge

Let \( f(n) \) denote the number of possible sequences of length \( n \), where each term is either \(0, 1,\) or \(-1\), such that the product of every three consecutive numbers is nonnegative. Compute \( f(33)\).

The best solution was submitted by 신민규 (KAIST 새내기과정학부 24학번, +4). Congratulations!

Here is the best solution of problem 2024-18.

Other solutions were submitted by 김준홍 (KAIST 수리과학과 석박통합과정, +3), 김찬우 (연세대학교 수학과 22학번, +3), 노희윤 (KAIST 수리과학과 석박통합과정, +3), 양준혁 (KAIST 수리과학과 20학번, +3), 우준서 (KAIST 수리과학과 20학번, +3), 이명규 (KAIST 전산학부 20학번, +3), 채지석 (KAIST 수리과학과 석박통합과정, +3), 최정담 (KAIST 디지털인문사회과학부 석사과정, +3), Daulet Kurmantayev (+3).

GD Star Rating
loading...

2024-19 Stationary function

Let \(g(t): [0,+\infty) \to [0,+\infty)\) be a decreasing continuous function. Assume \(g(0)=1\), and for every \(s, t \geq 0 \) \[t^{11}g(s+t) \leq 2024 \; [g(s)]^2.\] Show that \(g(11) = g(12)\).

GD Star Rating
loading...

Solution: 2024-17 Positive polynomials

Suppose that \( p(x) \) is a degree \( n \) polynomial with complex coefficients such that \( p(x) \geq 0 \) for any real number \( x \). Prove that
\[
p(x) + p'(x) + \dots + p^{(n)}(x) \geq 0
\]
for any real number \( x \).

The best solution was submitted by 이명규 (KAIST 전산학부 20학번, +4). Congratulations!

Here is the best solution of problem 2024-17.

Other solutions were submitted by 김준홍 (KAIST 수리과학과 석박통합과정, +3), 김찬우 (연세대학교 수학과 22학번, +3), 노희윤 (KAIST 수리과학과 석박통합과정, +3), 서성욱 (대전 동산고 3학년, +3), 양준혁 (KAIST 수리과학과 20학번, +3), 최정담 (KAIST 디지털인문사회과학부 석사과정, +3), 최현준 (KAIST 수리과학과 18학번, +3).

GD Star Rating
loading...

Solution: 2024-16 Stay positive!

Let \(A= [a_{ij}]_{1\leq i,j\leq 5}\) be a \(5\times 5\) positive definite (real) matrix. Show that the matrix \([a_{ij}/(i+j)]\) is also positive definite.

The best solution was submitted by 김찬우 (연세대학교 수학과 22학번, +4). Congratulations!

Here is the best solution of problem 2024-16.

Other solutions were submitted by 김준홍 (KAIST 수리과학과 석박통합과정, +3), 노희윤 (KAIST 수리과학과 석박통합과정, +3), 서성욱 (대전 동산고 3학년, +3), 신민규 (KAIST 새내기과정학부 24학번, +3), 양준혁 (KAIST 수리과학과 20학번, +3), 이명규 (KAIST 전산학부 20학번, +3), 최정담 (KAIST 디지털인문사회과학부 석사과정, +3).

GD Star Rating
loading...