Let \( X \in \mathbb{R}^{n \times n} \) be a symmetric matrix with eigenvalues \( \lambda_i \) and orthonormal eigenvectors \( u_i \). The spectral decomposition gives \( X = \sum_{i=1}^n \lambda_i u_i u_i^\top \). For a function \( f : \mathbb{R} \to \mathbb{R} \), define \( f(X) := \sum_{i=1}^n f(\lambda_i) u_i u_i^\top \). Let \( X, Y \in \mathbb{R}^{n \times n} \) be symmetric. Is it always true that \( e^{X+Y} = e^X e^Y \)? If not, under what conditions does the equality hold?
The best solution was submitted by 이명규 (전기및전자공학부 20학번, +4). Congratulations!
Here is the best solution of problem 2025-05.
Other solutions were submitted by 김동훈 (수리과학과 22학번, +3), 김준홍 (수리과학과 석박통합과정, +3), 신민규 (수리과학과 24학번, +3), 정서윤 (수리과학과 학사과정, +3), 채지석 (수리과학과 석박통합과정, +3).
loading...