Author Archives: Hyungryul

About Hyungryul

2003.3-2009.8 KAIST, Undergraduate student in Mathematics 2009.8-2014.8 Cornell University, PhD student in Mathematics 2014.9-2017.2 University of Bonn, Postdoc 2017.3-2021.2. KAIST, Assistant Professor 2021.3-Present. KAIST, Associate Professor

2022-11 groups with torsions

Does there exists a finitely generated group which contains torsion elements of order p for all prime numbers p?

Solutions for POW 2022-11 are due July 4th (Saturday), 12PM, and it will remain open if nobody solved it.

GD Star Rating
loading...

2022-08 two sequences

For positive integers \(n \geq 2\), let \(a_n = \lceil n/\pi \rceil \) and let \(b_n = \lceil \csc (\pi/n) \rceil \). Is \(a_n = b_n\) for all \(n \neq 3\)?

Solutions are due May 13th (Friday), 6PM, and it will remain open if nobody solved it.

GD Star Rating
loading...

2022-05 squares of perfect squares

Show that there exist perfect squares a, b, c such that \(a^2 + b^2 = c^2\).

====== REVISED (2022-04-04) ======

I hope you noticed the day this problem appeared was April fool’s day. Show instead that there do not exist perfect squares a, b, c such that \(a^2 + b^2 = c^2\), provided that a, b, c are nonzero integers.

GD Star Rating
loading...

2022-02 ordering group elements 

For any positive integer \(n \geq 2\), let \(B_n\) be the group given by the following presentation\[ B_n = < \sigma_1, \ldots, \sigma_{n-1} | \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \sigma_i \sigma_j = \sigma_j \sigma_i > \]where the first relation is for \( 1 \leq i \leq n-2 \) and the second relation is for \(|i-j| \geq 2\). Show that there exists a total order < on \(B_n\) such that for any three elements \(a, b, c\in B_n\), if \(a < b\) then \(ca < cb\). 

GD Star Rating
loading...

2021-20 A circle of perfect squares

Say a natural number \(n\) is a cyclically perfect if one can arrange the numbers from 1 to \(n\) on the circle without a repeat so that the sum of any two consecutive numbers is a perfect square. Show that 32 is the smallest cyclically perfect number. Find the second smallest cyclically perfect number.

GD Star Rating
loading...

2021-14 Perfectly normal product

Let X, Y be compact spaces. Suppose \(X \times Y\) is perfectly normal, i.e, for every disjoint closed subsets E, F in \(X \times Y\), there exists a continuous function \( f: X \times Y \to [0, 1] \subset \mathbb{R} \) such that \( f^{-1}(0) = E, f^{-1}(1) = F \). Is it true that at least one of X and Y is metrizable?

(added Sep. 11, 8AM: Assume further that \( X \times Y\) is Hausdorff.)

GD Star Rating
loading...

2021-08 Self-antipodal sets on the sphere

Prove or disprove that if C is any nonempty connected, closed, self-antipodal (ie., invariant under the antipodal map) set on \(S^2\), then it equals the zero locus of an odd, smooth function \(f:S^2 -> \mathbb{R}\).  

GD Star Rating
loading...