Show that if \(X\) is a Poisson random variable with parameter \(\mu\), there exists a constant \(c>0\) such that for \(t>\mu+1\), \(\mathbb{P}(X-\mu \geq t)\geq ce^{-2t\log (1+(t+1)/\mu)}\).
Author Archives: haywse
2025-11 Maxima of standard Gaussian
Let \( X_1, X_2, \ldots \) be an infinite sequence of standard normal random variables which are not necessarily independent. Show that there exists a universal constant \( C \) such that \(\mathbb{E} \left[ \max_i \frac{|X_i|}{\sqrt{1 + \log i}} \right] \leq C\).
2025-05 Commutativity and the matrix exponential
Let \( X \in \mathbb{R}^{n \times n} \) be a symmetric matrix with eigenvalues \( \lambda_i \) and orthonormal eigenvectors \( u_i \). The spectral decomposition gives \( X = \sum_{i=1}^n \lambda_i u_i u_i^\top \). For a function \( f : \mathbb{R} \to \mathbb{R} \), define \( f(X) := \sum_{i=1}^n f(\lambda_i) u_i u_i^\top \). Let \( X, Y \in \mathbb{R}^{n \times n} \) be symmetric. Is it always true that \( e^{X+Y} = e^X e^Y \)? If not, under what conditions does the equality hold?
