Good luck with your midterm exam next week. Next problem will be posted on April 1st 8th.
loading...
Good luck with your midterm exam next week. Next problem will be posted on April 1st 8th.
Let \(a_1\le a_2\le \cdots \le a_k\) and \(b_1\le b_2\le \cdots \le b_l\) be sequences of positive integers at most M. Prove that if \[ \sum_{i=1}^{k} a_i^n = \sum_{j=1}^l b_j^n\] for all \(1\le n\le M\), then \(k=l\) and \(a_i=b_i\) for all \(1\le i\le k\).
The best solution was submitted by Cho, Yonghwa (조용화), 수리과학과 석사과정 2010학번.
Here is his Solution of Problem 2011-6.
Alternative solutions were submitted by 김지원 (2010학번, +3), 이재석 (수리과학과 2007학번, +3), 구도완 (해운대고등학교 3학년, +3). One incorrect solution was submitted.
Let \(a_1\le a_2\le \cdots \le a_k\) and \(b_1\le b_2\le \cdots \le b_l\) be sequences of positive integers at most M. Prove that if \[ \sum_{i=1}^{k} a_i^n = \sum_{j=1}^l b_j^n\] for all \(1\le n\le M\), then \(k=l\) and \(a_i=b_i\) for all \(1\le i\le k\).
Find all linear functions f on the set of n×n matrices such that f(XY)=f(YX) for every pair of n×n matrices X and Y.
Added: The value f(X) is a scalar.
The best solution was submitted by Jesek Lee (이재석), 수리과학과 2007학번. Congratulations!
Here is his Solution of Problem 2011-5.
Alternative solutions were submitted by 강동엽 (전산학과 2009학번, +3), 박민재 (2011학번, +3), 서기원 (수리과학과 2009학번, +3), 조용화 (수리과학과 석사과정 2010학번, +3), 김지원 (2010학번, +3), 어수강 (홍익대학교 수학교육학과 2004학번, +3), 변범부 (경남대학교 수학교육과 2005학번, +3). One incorrect solution was submitted.
Find all linear functions f on the set of n×n matrices such that f(XY)=f(YX) for every pair of n×n matrices X and Y.
Added: The value f(X) is a scalar.
Let n>2. Let f (x) be a degree-n polynomial with real coefficients. If f (x) has n distinct real zeros r1<r2<…<rn, then Rolle’s theorem implies that the largest real zero q of f´(x) is between rn-1 and rn. Prove that q>(rn-1+rn)/2.
The best solution was submitted by Gee Won Suh (서기원), 2009학번. Congratulations!
Here is his Solution of Problem 2011-4.
Alternative solutions were submitted by 박민재 (2011학번, +3), 강동엽 (전산학과 2009학번, +3), 김태호 (2011학번, +3), 김지원 (2010학번, +3), 이재석 (수리과학과 2007학번, +3), 김현수 (한국과학영재학교 3학년, +3), 구도완 (해운대고등학교 3학년, +3).
Let n>2. Let f (x) be a degree-n polynomial with real coefficients. If f (x) has n distinct real zeros r1<r2<…<rn, then Rolle’s theorem implies that the largest real zero q of f´(x) is between rn-1 and rn. Prove that q>(rn-1+rn)/2.
Let us write \([n]=\{1,2,\ldots,n\}\). Let \(a_n\) be the number of all functions \(f:[n]\to [n]\) such that \(f([n])=[k]\) for some positive integer \(k\). Prove that \[a_n=\sum_{k=0}^{\infty} \frac{k^n}{2^{k+1}}.\]
The best solution was submitted by Kang, Dongyub (강동엽), 전산학과 2009학번. Congratulations!
Here is his Solution of Problem 2011-3.
Alternative solutions were submitted by 서기원 (수리과학과 2009학번, +3), 박민재 (2011학번, +3), 김치헌 (수리과학과 2006학번, +2), 이동민 (수리과학과 2009학번, +2), 구도완 (해운대고등학교 3학년, +2).
P.S. A common mistake is to assume that \(\sum_{i}\sum_{j}\) can be swapped without showing that a sequence converges absolutely.