Without loss of generality, we assume that the coefficient of x^n is positive. (proof is similar when the coefficient is negative.) Then $f(x) = a(x - r_1)(x - r_2) \cdots (x - r_n)$ with a > 0. By computing, $f'(x) = (x - r_1)(x - r_2) \cdots (x - r_{n-2})\{(x - r_{n-1}) + (x - r_n)\}$ $+ \sum_{i=1}^{n-2} \frac{(x - r_1)(x - r_2) \cdots (x - r_{n-2})}{x - r_i} (x - r_{n-1})(x - r_n)$ It is obvious that $\forall i = 1, \dots, n-2, \quad \frac{r_n + r_{n-1}}{2} - r_i > 0$. Thus, $\frac{(x - r_1)(x - r_2) \cdots (x - r_n)}{x - r_i} > 0$ when $x = \frac{r_n + r_{n-1}}{2}$ (Let $r = \frac{r_n + r_{n-1}}{2}$) $\therefore \sum_{i=1}^{n-2} \frac{(r - r_1)(r - r_2) \cdots (r - r_{n-2})}{r - r_i} (r - r_{n-1})(r - r_n) < 0$ ($\because r_{n-1} < r < r_n$) \cdots (1) Also, $(r - r_1)(r - r_2) \cdots (r - r_{n-2})\{(r - r_{n-1}) + (r - r_n)\}$ $= (r - r_1)(r - r_2) \cdots (r - r_{n-2})(2r - r_{n-1} - r_n) = 0$ \cdots (2)

Therefore,
$$f'(r) = (r - r_1)(r - r_2) \cdots (r - r_{n-2})(2r - r_n - r_{n-1})$$

+ $\sum_{i=1}^{n-2} \frac{(r - r_1)(r - r_2) \cdots (r - r_{n-2})}{r - r_i} (r - r_{n-1})(r - r_n)$ (by ②)
= $\sum_{i=1}^{n-2} \frac{(r - r_1)(r - r_2) \cdots (r - r_{n-2})}{r - r_i} (r - r_{n-1})(r - r_n) < 0$ (by ①)

Since r_n is a zero which has maximum value, $f'(r_n) > 0$. (It is easily observed by a graph of f) Thus there exist q' such that $r_{n-1} < r < q' < r_n$ and f'(q') = 0. Because there are exact one zero of f' between r_{n-1} and r_n , q = q'

Therefore, $q = q' > r = \frac{r_1 + r_2}{2}$.