POW 2011-4

Without loss of generality, we assume that the coefficient of x^{n} is positive. (proof is similar when the coefficient is negative.)
Then $f(x)=a\left(x-r_{1}\right)\left(x-r_{2}\right) \cdots\left(x-r_{n}\right)$ with $a>0$.
By computing, $f^{\prime}(x)=\left(x-r_{1}\right)\left(x-r_{2}\right) \cdots\left(x-r_{n-2}\right)\left\{\left(x-r_{n-1}\right)+\left(x-r_{n}\right)\right\}$
$+\sum_{i=1}^{n-2} \frac{\left(x-r_{1}\right)\left(x-r_{2}\right) \cdots\left(x-r_{n-2}\right)}{x-r_{i}}\left(x-r_{n-1}\right)\left(x-r_{n}\right)$
It is obvious that $\forall i=1, \cdots, n-2, \frac{r_{n}+r_{n-1}}{2}-r_{i}>0$.
Thus, $\frac{\left(x-r_{1}\right)\left(x-r_{2}\right) \cdots\left(x-r_{n}\right)}{x-r_{i}}>0$ when $x=\frac{r_{n}+r_{n-1}}{2}$ (Let $r=\frac{r_{n}+r_{n-1}}{2}$)
$\therefore \sum_{i=1}^{n-2} \frac{\left(r-r_{1}\right)\left(r-r_{2}\right) \cdots\left(r-r_{n-2}\right)}{r-r_{i}}\left(r-r_{n-1}\right)\left(r-r_{n}\right)<0 \quad\left(\because r_{n-1}<r<r_{n}\right)$
Also, $\left(r-r_{1}\right)\left(r-r_{2}\right) \cdots\left(r-r_{n-2}\right)\left\{\left(r-r_{n-1}\right)+\left(r-r_{n}\right)\right\}$

$$
\begin{equation*}
=\left(r-r_{1}\right)\left(r-r_{2}\right) \cdots\left(r-r_{n-2}\right)\left(2 r-r_{n-1}-r_{n}\right)=0 \tag{2}
\end{equation*}
$$

Therefore, $f^{\prime}(r)=\left(r-r_{1}\right)\left(r-r_{2}\right) \cdots\left(r-r_{n-2}\right)\left(2 r-r_{n}-r_{n-1}\right)$
$+\sum_{i=1}^{n-2} \frac{\left(r-r_{1}\right)\left(r-r_{2}\right) \cdots\left(r-r_{n-2}\right)}{r-r_{i}}\left(r-r_{n-1}\right)\left(r-r_{n}\right)$ (by (2))
$=\sum_{i=1}^{n-2} \frac{\left(r-r_{1}\right)\left(r-r_{2}\right) \cdots\left(r-r_{n-2}\right)}{r-r_{i}}\left(r-r_{n-1}\right)\left(r-r_{n}\right)<0$ (by

Since r_{n} is a zero which has maximum value, $f^{\prime}\left(r_{n}\right)>0$.
(It is easily observed by a graph of f)
Thus there exist q^{\prime} such that $r_{n-1}<r<q^{\prime}<r_{n}$ and $f^{\prime}\left(q^{\prime}\right)=0$.
Because there are exact one zero of f^{\prime} between r_{n-1} and $r_{n}, q=q^{\prime}$
Therefore, $q=q^{\prime}>r=\frac{r_{1}+r_{2}}{2}$.

