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Without loss of generality, we assume that the coefficient of 2" is positive.
(proof is similar when the coefficient is negative.)
Then f(z)=alz—r)(@—ry)-- (x—r,) with a> 0.

By computing, f'(z)=(@—r)@—ry) - (@—r,_){la—r,_ )+ @—r,)}
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It is obvious that Vi=1,---,n—2, 5 —r; > 0.
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T 2 2
=2 (r—r )r—ry) - (r—r,_y)
Z 1 7"2—’[“ - (T_rn—l)(r_rn)<0 (.'.T‘n—l<r<7ﬂn) @
i=1 i

Also, (7“_7"1)(7"_7“2)"’ (T_T7172){(T_T7171)+(T_Tn)}
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Therefore, f'(r)=@—r)r—ry) - (r—r,_,)2r—r,—7,_,)
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Since r, is a zero which has maximum value, f’ (rn) > 0.

(It is easily observed by a graph of f)
Thus there exist ¢ such that r,_, <r<g¢ <wr, and f'(¢')=0.

Because there are exact one zero of f between r,_, and r,, q=¢
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Therefore, q=¢ >r=



