2011\#6 Let $a_{1} \leq \cdots \leq a_{k}$ and $b_{1} \leq \cdots \leq b_{l}$ be sequences of positive integers at most M. Prove that if

$$
\sum_{i=1}^{k} a_{i}^{n}=\sum_{j=1}^{l} b_{j}^{n}
$$

for all $1 \leq n \leq M$, then $k=l$ and $a_{i}=b_{i}$ for all $1 \leq i \leq k$.

Solution
For each $i \in\{1,2, \ldots, M\}$, let c_{i} and d_{i} be the number of " i " in the sequence $\left(a_{1}, \ldots, a_{k}\right)$ and $\left(b_{1}, \ldots, b_{l}\right)$, respectively. Then the equation (\star) is equivalent to

$$
\sum_{i=1}^{M} i^{n} c_{i}=\sum_{i=1}^{M} i^{n} d_{i}, \quad \forall n \in\{1,2, \ldots, M\}
$$

which can be written as

$$
V\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{M}
\end{array}\right)=V\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
v_{M}
\end{array}\right)
$$

where

$$
V=\left(\begin{array}{cccc}
1 & 2 & \cdots & M \\
1^{2} & 2^{2} & \cdots & M^{2} \\
& \vdots & \ddots & \vdots \\
1^{M} & 2^{M} & \cdots & M^{M}
\end{array}\right)
$$

Since V is the Vandermonde matrix whose determinant is nonzero, V is invertible. This shows that $c_{i}=d_{i}$ for each $i=1,2, \ldots, M$. Hence we conclude that $k=l$ and $a_{i}=b_{i}$ for each $i=1,2, \ldots, k$.

