Let \(P\) be a regular \(2n\)-gon. A perfect matching is a partition of vertex points into \(n\) unordered pairs; each pair represents a chord drawn inside \(P\). Two chords are said to “intersect” if they have a nonempty intersection.
Let \(X\) be the (random) number of intersection points (formed by intersecting chords) in a perfect matching chosen uniformly at random from the set of all possible matchings. Note that more than two chords can intersect at the same point, and in this case this intersection point is just counted once. Compute \(\lim_{n\rightarrow \infty} \frac{\mathbb E[X]}{n^2}\).
loading...