Solution: 2024-15 The Narrow Gap Sequence Conundrum

Is it possible to arrange the numbers \(1, 2, 3, \ldots, 2024\) in a sequence such that the difference between any two adjacent numbers is greater than \(1\) but less than \(4\)?

The best solution was submitted by 김준홍 (KAIST 수리과학과 석박통합과정, +4). Congratulations!

Here is the best solution of problem 2024-15.

Other solutions were submitted by 권오관 (연세대학교 수학과 22학번, +3), 김찬우 (연세대학교 수학과 22학번, +3), 노희윤 (KAIST 수리과학과 석박통합과정, +3), 서성욱 (대전 동산고 3학년, +3), 신민규 (KAIST 새내기과정학부 24학번, +3), 양준혁 (KAIST 수리과학과 20학번, +3), 이명규 (KAIST 전산학부 20학번, +3), 정영훈 (KAIST 새내기과정학부 24학번, +3), 채지석 (KAIST 수리과학과 석박통합과정, +3), 최백규 (KAIST 생명과학과 박사과정, +3), 최정담 (KAIST 디지털인문사회과학부 석사과정, +3), Anar Rzayev (KAIST 전산학부 19학번, +3), ASKM Sayeef Uddin (KAIST 수리과학과 22학번, +3).

GD Star Rating
loading...

Solution: 2024-14 Infinite series of reciprocals

Evaluate the following sum (with proof):
\[
\sum_{k=0}^{\infty} \frac{1}{(6k+1)(6k+2)(6k+3)(6k+4)(6k+5)(6k+6)}
\]

The best solution was submitted by 채지석 (KAIST 수리과학과 석박통합과정, +4). Congratulations!

Here is the best solution of problem 2024-14.

Other solutions were submitted by 권오관 (연세대학교 수학과 22학번, +3), 김준홍 (KAIST 수리과학과 석박통합과정, +3), 김찬우 (연세대학교 수학과 22학번, +3), 노희윤 (KAIST 수리과학과 석박통합과정, +3), 양준혁 (KAIST 수리과학과 20학번, +3), 이명규 (KAIST 전산학부 20학번, +3), 정영훈 (KAIST 새내기과정학부 24학번, +3).

GD Star Rating
loading...

Solution: 2024-13 Concave functions (revisited)

Let \(u_n(t)\), \(n=1,2…\) be a sequence of concave functions on \(\mathbb{R}\). Let \(g(t)\) be a differentiable function on \(\mathbb{R}\). Assume \(\liminf_{n\to\infty} u_n(t) \geq g(t)\) for every \(t\) and \(\lim_{n\to \infty} u_n(0) = g(0)\). Suppose \(u_n'(0)\) exist for \(n=1,2,…\). Compare \(\lim_{n\to \infty} u_n'(0)\) and \(g'(0)\).

The best solution was submitted by 김찬우 (연세대학교 수학과 22학번, +4). Congratulations!

Here is the best solution of problem 2024-13.

Other solutions were submitted by 김준홍 (KAIST 수리과학과 석박통합과정, +3), 노희윤 (KAIST 수리과학과 석박통합과정, +3), 양준혁 (KAIST 수리과학과 20학번, +3), 이명규 (KAIST 전산학부 20학번, +3), 정영훈 (KAIST 새내기과정학부 24학번, +2).

GD Star Rating
loading...

Solution: 2024-12 The Triple Match Matrix Challenge

Count the number of distinct matrices \( A \), where two matrices are considered identical if one can be obtained from the other by rearranging rows and columns, that have the following properties:

  1. \( A \) is a \( 7 \times 7 \) matrix and every entry of \( A \) is \( 0 \) or \( 1 \).
  2. Each row of \( A\) contains exactly 3 non-zero entries.
  3. For any two distinct rows \( i\) and \( j\) of \( A\), there exists exactly one column \( k \) such that \( A_{ik} \neq 0 \) and \( A_{jk} \neq 0 \).

The best solution was submitted by 권오관 (연세대학교 수학과 22학번, +4). Congratulations!

Here is the best solution of problem 2024-12.

Other solutions were submitted by 김준홍 (KAIST 수리과학과 석박통합과정, +3), 김찬우 (연세대학교 수학과 22학번, +3), 노희윤 (KAIST 수리과학과 석박통합과정, +3), 양준혁 (KAIST 수리과학과 20학번, +3), 이명규 (KAIST 전산학부 20학번, +3), 정영훈 (KAIST 새내기과정학부 24학번, +3), 채지석 (KAIST 수리과학과 석박통합과정, +3), Eun Kyeol (+3).

GD Star Rating
loading...

2024-13 Concave functions (revisited)

Let \(u_n(t)\), \(n=1,2…\) be a sequence of concave functions on \(\mathbb{R}\). Let \(g(t)\) be a differentiable function on \(\mathbb{R}\). Assume \(\liminf_{n\to\infty} u_n(t) \geq g(t)\) for every \(t\) and \(\lim_{n\to \infty} u_n(0) = g(0)\). Suppose \(u_n'(0)\) exist for \(n=1,2,…\). Compare \(\lim_{n\to \infty} u_n'(0)\) and \(g'(0)\).

GD Star Rating
loading...