Suppose \( a_1, a_2, \dots, a_{2023} \) are real numbers such that
\[
a_1^3 + a_2^3 + \dots + a_n^3 = (a_1 + a_2 + \dots + a_n)^2
\]
for any \( n = 1, 2, \dots, 2023 \). Prove or disprove that \( a_n \) is an integer for any \( n = 1, 2, \dots, 2023 \).
The best solution was submitted by 기영인 (KAIST 수리과학과 22학번, +4). Congratulations!
Here is the best solution of problem 2023-01.
Other solutions were submitted by 고성훈 (KAIST 수리과학과 18학번, +3), 김찬우 (연세대학교 수학과 22학번, +3), 박기윤 (KAIST 새내기과정학부 23학번, +3), 임도현 (KAIST 수리과학과 22학번, +3), 신정여 (KAIST 수리과학과 21학번, +3), 문강연 (KAIST 수리과학과 22학번, +3), 이명규 (KAIST 전산학과 20학번, +3), 박현영 (KAIST 전기및전자공학부 석박사통합과정 22학번, +3), Myint Mo Zwe (KAIST 새내기과정학부 22학번, +3), 이재경 (KAIST 뇌인지과학과 22학번, +3), Matthew Seok, 김기수 (KAIST 수리과학과 18학번, +3), 박준성 (KAIST 수리과학과 석박통합과정 22학번, +3), Yusuf Bahadir Kilicarslan (KAIST 전산학부 19학번, +3), 이동하 (KAIST 새내기과정학부 23학번, +2). Late solutions are not graded.
GD Star Rating
loading...