Solution: 2023-15 An inequality for complex polynomials

Let \(p(z), q(z) \) and \(r(z)\) be polynomials with complex coefficients in the complex plane. Suppose that \(|p(z)| + |q(z)| \leq |r(z)|\) for every \(z\). Show that there exist two complex numbers \( a,b \) such that \(|a|^2 +|b|^2 =1\) and \( a p(z) + bq(z) =0 \) for every \(z\).

The best solution was submitted by 김기수 (KAIST 수리과학과 18학번, +4). Congratulations!

Here is the best solution of problem 2023-15.

Other solutions were submitted by 강지민 (세마고 3학년, +3), 김민서 (KAIST 수리과학과 19학번, +3), 김찬우 (연세대학교 수학과 22학번, +3), 박기윤 (KAIST 새내기과정학부 23학번, +3), 신민서 (KAIST 수리과학과 20학번, +3), 여인영 (KAIST 물리학과 20학번, +3),이도현 (KAIST 수리과학과 석박통합과정 23학번, +3), 이명규 (KAIST 전산학부 20학번, +3), 조현준 (KAIST 수리과학과 22학번, +3), 지은성 (KAIST 수리과학과 20학번, +3), 최민규 (한양대학교 의과대학 졸업생, +3), 채지석 (KAIST 수리과학과 석박통합과정 21학번, +3), Anar Rzayev (KAIST 전산학부 19학번, +3), Muhammadfiruz Hasanov (+3).

GD Star Rating