KAIST POW 2023-17

대전동산고등학교 2학년 서성욱

Let $f(x)=x^{4}+(2-a) x^{3}-(2 a+1) x^{2}+(a-2) x+2 a$ for some $a \geq 2$. Draw two tangent lines of its graph at the point $(-1,0)$ and $(1,0)$ and let P be the intersection point. Denote by T the area of the triangle whose vertices are $(-1,0),(1,0)$ and P. Let A be the area of domain enclosed by the interval $[-1,1]$ and the graph of the function on this interval. Show that $T \leq 3 A / 2$.

Factorizing the functoin, we get

$$
f=(x+2)(x+1)(x-1)(x-a)
$$

<Figure 1.>
Figure 1. shows the graph of f. So

$$
A=\int_{-1}^{1} f d x=\frac{8 a}{3}-\frac{4}{15}
$$

At each point $(-1,0)$ and (1,0), the slope is

$$
\begin{aligned}
& \lim _{x \rightarrow-1} \frac{(x+2)(x+1)(x-1)(x-a)}{(x+1)}=2(a+1), \\
& \lim _{x \rightarrow 1} \frac{(x+2)(x+1)(x-1)(x-a)}{(x-1)}=6(1-a)
\end{aligned}
$$

so each tangent is $2(a+1)(x+1), 6(1-a)(x-1)$, and consequently, $x=\frac{3(a-1)}{2 a-1}-1$, which is x coordinate of P. Thus, $P=\left(\frac{3(a-1)}{2 a-1}-1, \frac{6\left(a^{2}-1\right)}{2 a-1}\right)$ and $T=\frac{6\left(a^{2}-1\right)}{2 a-1}$.

So it can be easily shown that $T \leq \frac{3 A}{2}$ is equivalent with the inequality

$$
5 a^{2}-12 a+16 \geq 0
$$

in the region $a>\frac{1}{2}$ and since the equation has discriminant $D=36-80=-44<0$, the inequality holds true for all real number a, which of course includes all $a \geq 2$.

