Solution: 2012-16 A finite ring

Prove that if a finite ring has two elements \(x\) and \(y\) such that \(xy^2=y\), then \( yxy=y\).

The best solution was submitted by Myeongjae Lee (이명재), 2012학번. Congratulations!

Here is Solution of Problem 2012-16.

Alternative solutions were submitted by 김주완 (수리과학과 2010학번, +3), 김지원 (수리과학과 2010학번, +3), 서기원 (수리과학과 2009학번, +3), 김태호 (수리과학과 2011학번, +3), 임현진 (물리학과 2010학번, +3), 박민재 (2011학번, +3), 조상흠 (수리과학과 2010학번, +3), 정우석 (서강대 수학과 2011학번, +3). One incorrect solution (KHK) was submitted.

GD Star Rating
loading...

Solution: 2012-15 Functional Equation

Let \(n\) be a fixed positive integer. Find all functions \( f:\mathbb{R}\to\mathbb{R}\) satisfying \[ f(x^{n+1}-y^{n+1})=(x-y)[f(x)^n+f(x)^{n-1}f(y)+\cdots+f(x)f(y)^{n-1}+f(y)^n].\]

The best solution was submitted by Kim, Taeho (김태호), 수리과학과 2011학번. Congratulations!

Here is his Solution of Problem 2012-15.

Alternative solutions were submitted by 임정환 (수리과학과 2009학번, +3), 곽걸담 (물리학과 2011학번, +2), 서기원 (수리과학과 2009학번, +2),  김홍규 (수리과학과 2011학번, +2), 김지원 (수리과학과 2010학번, +2), 이명재 (2012학번, +2), 조상흠 (수리과학과 2010학번, +2). There were 2 incorrect submissions (LHJ, KDR).

GD Star Rating
loading...

Solution: 2012-14 Equation with Integration

Determine all continuous functions \(f:(0,\infty)\to(0,\infty)\) such that \[ \int_t^{t^3} f(x) \, dx = 2\int_1^t f(x)\,dx\] for all \(t>0\).

The best solution was submitted by Junghwan Lim (임정환), 수리과학과 2009학번. Congratulations!

Here is his Solution of Problem 2012-14.

Alternative solutions were submitted by 김주완 (2010학번, +3), 김태호 (수리과학과 2011학번, +3), 김홍규 (2011학번, 3), 곽걸담 (물리학과 2011학번, +3), 이신영 (2012학번, +3), 박민재 (2011학번, +3), 박종호 (수리과학과 2009학번, +3), 서기원 (수리과학과 2009학번, +3), 윤영수 (2011학번, +3), 이명재 (2012학번, +3), 조상흠 (2010학번, +3), 조준영 (2012학번, +3), 양지훈 (수리과학과 2010학번, +2), 최원준 (물리학과 2009학번, +2), 장영재 (수리과학과 2011학번, +2), 김건수 (서울대학교 전기컴퓨터공학부 2012학번, +3), 고재윤 (연세대학교, +3), 박훈민 (대전과학고 3학년, +3), 박항 (한국과학영재학교 2010학번, +3), 어수강 (서울대학교 수리과학부 대학원생, +3). There were 3 incorrect solutions submitted (RJH, KDR, JWS).

GD Star Rating
loading...
KAIST Math Problem of the Week 2012 봄 시상식 박민재 이명재 서기원 조준영 김태호

Concluding 2012 Spring

Thanks all for participating POW actively. Here’s the list of winners:

  • 1st prize: Park, Minjae (박민재) – 2011학번
  • 2nd prize: Lee, Myeongjae  (이명재) – 2012학번
  • 3rd prize: Suh, Gee Won (서기원) – 수리과학과 2009학번
  • 4th prize: Cho, Junyoung (조준영) – 2012학번
  • 5th prize: Kim, Taeho (김태호) – 수리과학과 2011학번

Congratulations! As announced earlier, we have nicer prize this semester – iPad 16GB for the 1st prize, iPod Touch 32GB for the 2nd prize, etc.

KAIST Math Problem of the Week 2012 봄 시상식 박민재 이명재 서기원 조준영 김태호

박민재 (2011학번) 41
이명재 (2012학번) 34
서기원 (2009학번) 29
조준영 (2012학번) 17
김태호 (2011학번) 16
서동휘 (2009학번) 5
임정환 (2009학번) 5
이영훈 (2011학번) 4
임창준 (2012학번) 3
Phan Kieu My (2009학번) 3
장성우 (2010학번) 2
홍승한 (2012학번) 2
윤영수 (2011학번) 2
변성철 (2011학번) 2
GD Star Rating
loading...

Solution: 2012-12 Big partial sum

Let A be a finite set of complex numbers. Prove that there exists a subset B of A such that \[ \bigl\lvert\sum_{z\in B} z\bigr\lvert \ge \frac{ 1}{\pi}\sum_{z\in A} \lvert z\rvert.\]

The best solution was submitted by Minjae Park (박민재), 2011학번. Congratulations!

Here is Solution of Problem 2012-12.

Two incorrect solutions were submitted (M.J.L., W.S.J.).

GD Star Rating
loading...