POW 2012-14

임정환

September 11, 2012

Define $F(t)=\int_{1}^{t} f(x) d x$. Then, by the Fundamental Theorem of Calculus, we have F is differentiable and it's derivative is equal to f. i.e. $F^{\prime}(t)=f(t)$.
From the given equation, we have $F\left(t^{3}\right)=3 F(t)$. When we differentiate both side of that equation, we have $t^{2} f\left(t^{3}\right)=f(t)$ or $f\left(t^{3}\right)=f(t) / t^{2}$.
Now, fix $t \in(0, \infty)$. Then we have $f(t)=\frac{f\left(t^{\frac{1}{3^{n}}}\right)}{t^{2 / 3+2 / 2^{2}+\cdots+2 / 3^{n}}}$ for all $n \in \mathbb{N}$. Take a limit in both sides by n, then we have $f(t)=f(1) / t$. Actually, when we calculate original equation with $f(t)=f(1) / t$, we can verify the equation holds.

