POW 2012-15 Functional Equation
$p f$) We can easily obtain that $f(0)=0, f(x)=-f(-x), f\left(x^{n+1}\right)=x f(x)^{n}$. Let's consider two cases.
(1) n is odd
$n=2 k-1(k \geq 1)$. By substituting y as $-y$, we obtain the following two equations:
$f\left(x^{2 k}-y^{2 k}\right)=(x-y)\left(f(x)^{2 k-1}+f(x)^{2 k-2} f(y)+\cdots+f(y)^{2 k-1}\right)$
$f\left(x^{2 k}-y^{2 k}\right)=(x+y)\left(f(x)^{2 k-1}-f(x)^{2 k-2} f(y)+\cdots-f(y)^{2 k-1}\right)$

Since two equations are equal, we obtain following with some calculation: $(x f(y)-y f(x))\left(f(x)^{2 k-2}+f(x)^{2 k-4} f(y)^{2}+\cdots+f(y)^{2 k-2}\right)=0 \cdots(*)$

Using $f\left(x^{n+1}\right)=x f(x)^{n}, f(1)=f(1)^{n}$. If $n=1, f(1)$ could be arbitrary real number. From $\left(^{*}\right)$, we get $f(x)=f(1) x$ by substituting $y=1$. If $n \geq 3$, $f(1)=0$ or 1 or -1 . When $f(1)=0$, we substitute $y=1$ for $\left(^{*}\right)$ again. We get $f(x) \equiv 0$. The other cases, when $f(1)=1$ or -1 , we put $y=-1$ in $(*)$. Since $f(x)^{2 k-1}+f(x)^{2 k-2} f(1)+\cdots+f(1)^{2 k-1}>0, f(x)=f(1) x$. As a result, the solution is $f(x) \equiv c x(\forall c \in \mathbb{R})(n=1), f(x) \equiv 0$ or $f(x) \equiv x$ or $f(x) \equiv-x(n \geq 3)$.
(2) n is even
$n=2 k(k \geq 0)$. We can write original equation as $f\left(x^{2 k+1}-y^{2 k+1}\right)=(x-$ $y)\left(f(x)^{2 k}+f(x)^{2 k-1} f(y)+\cdots+f(y)^{2 k}\right)$. Since $f(x)=-f(-x)$, we only consider when $x>0$. We want to show that $f(x) \equiv x, f(x) \equiv 0$ are the solution. First, we put $-x$ instead of y. Then, $f\left(2 x^{2 k+1}\right)=2 x f(x)^{n+1}=2 f\left(x^{2 k+1}\right)$. Since $x^{2 k+1}$ can express all real number, $f(2 x)=2 f(x)$. And if $x>0$, $f(x)=x^{\frac{1}{2 n+1}} f\left(x^{\frac{1}{2 n+1}}\right)^{2 k}>0$. Similarly, if $x<0$, then $f(x)<0$. Due to $f\left(x^{2 k+1}\right)=x f(x)^{2 k}, f(1)=0$ or $f(1)=1$.

Case1. $f(1)=0$
We put $x^{\prime}=x^{\frac{1}{2 k+1}}, y^{\prime}=(x-1)^{\frac{1}{2 k+1}}$ instead of x, y in the equation. So, we can know that $0=\left(x^{\prime}-y^{\prime}\right)\left(f\left(x^{\prime}\right)^{2 k}+f\left(x^{\prime}\right)^{2 k-1} f\left(y^{\prime}\right)+\cdots+f\left(y^{\prime}\right)^{2 k}\right)$. We use that $a^{2 k}+a^{2 k-1} b+\cdots+b^{2 k} \geq 0$ and equality holds if and only if $a=b=0$. So we obtain $f\left(x^{\prime}\right)=0$. Thus, for all $x \in \mathbb{R}, f(x) \equiv 0$.

Case2. $f(1)=1$

Suppose that there is a positive number x such that $f(x)<x$. And define the set $A=\{x: f(x)<x, x>0\}$. We will prove that such x does not exist. If $x \in A, x^{2 k+1} \in A$ because $f\left(x^{2 k+1}\right)=x f(x)^{2 k}<x^{2 k+1}$. And if $x \in A, x^{\frac{1}{2 k+1}} \in A$ because $f(x)=x^{\frac{1}{2 k+1}} f\left(x^{\frac{1}{2 k+1}}\right)^{2 k}<x$. Also by using $f(2 x)=2 f(x)$, we can know that if $x \in A, 2 x, \frac{x}{2} \in A$. When $x, y(x>y) \in A$, $f\left(x^{2 k+1}-y^{2 k+1}\right)=(x-y)\left(f(x)^{2 k}+f(x)^{2 k-1} f(y)+\cdots+f(y)^{2 k}\right)<(x-$ $y)\left(x^{2 k}+x^{2 k-1} y+\cdots+y^{2 k}\right)=x^{2 k+1}-y^{2 k+1}$.
(i) $x>1$

Put $y=1$ in the original equation. We can obtain $\frac{f\left(x^{2 k+1}-1\right)}{x^{2 k+1}-1}=\frac{f(x)^{2 k}+f(x)^{2 k-1}+\cdots+1}{x^{2 k}+x^{2 k-1}+\cdots+1}<$

1. Therefore, $x^{2 k+1}-1 \in A$.
$x \in A \Rightarrow x^{\frac{1}{k+1}} \in A \Rightarrow x-1 \in A \Rightarrow(x-1)^{\frac{1}{2 k+1}} \in A$. We put $x^{\frac{1}{2 k+1}},(x-1)^{\frac{1}{2 k+1}}$ in the inequality $f\left(x^{2 k+1}-y^{2 k+1}\right)<x^{2 k+1}-y^{2 k+1}$. So, we gain $f(1)<1$. Contradiction.
(ii) $x<1$

Similarly, we obtain $\frac{f\left(1-x^{2 k+1}\right)}{1-x^{2 k+1}}=\frac{f\left(x x^{2 k}+f(x)^{2 k-1}+\cdots+1\right.}{x^{2 k}+x^{2 k-1}+\cdots+1}<1$. Therefore, if $x \in A, 1-x^{2 k+1} \in A . y \in A \Rightarrow y^{\frac{1}{2 k+1}} \in A \Rightarrow 1-y,(1-y)^{\frac{1}{2 k+1}} \in A$ Now, if $y \in A$, then $\frac{y}{2} \in A$. By some operations, we obtain $\left(\frac{y}{2}\right)^{\frac{1}{2 k+1}} \in$ $A, 1-\frac{y}{2}, 2-y,(2-y)^{\frac{1}{2 k+1}} \in A$. We put $(2-y)^{\frac{1}{2 k+1}}$ and $(1-y)^{\frac{1}{2 k+1}}$ in the inequality $f\left(x^{2 k+1}-y^{2 k+1}\right)<x^{2 k+1}-y^{2 k+1}$. Then, we get $f(1)<1$. Contradiction.

By (i), (ii), there is no $x>0$ such that $f(x)<x$. Similarly we can prove that there is no $x>0$ such that $f(x)>x$. Therefore, in this case, $f(x) \equiv x$.

In these cases, we can simply write $f(x)=f(1) x(f(1)=0$ or 1$)$.

Answer:
$f(x) \equiv f(1) x(n=1)$
$f(x) \equiv x$ or $f(x) \equiv-x, f(x) \equiv 0(n \geq 3, n$:odd $)$ $f(x) \equiv f(1) x(f(1)=0$ or 1$)(n:$:even $)$

