KAIST POW 2012-16

KAIST Myeongjae Lee

September 25, 2012
(A finite ring) Prove that if a finite ring has two elements x and y such that $x y y=y$, then $y x y=y$.

Proof. Consider a subset $\left\{y^{k} \mid k \in \mathbb{N}\right\}$. Since the ring is finite, the subset is also finite, so there must exist $n, m \in \mathbb{N}$ such that $y^{n}=y^{n+m}$. If $n>1$,

$$
y^{n-1}=x y^{n}=x y^{n+m}=y^{n-1+m}
$$

By repeating this, we get $y=y^{m+1}$. Therefore,

$$
y x y=y x y^{m+1}=y y^{m}=y^{m+1}=y
$$

