Solution: 2016-2 Integral limit

For \( a \geq 0 \), find
\[
\lim_{n \to \infty} n \int_{-1}^0 \left( x + \frac{x^2}{2} + e^{ax} \right)^n dx.
\]

The best solution was submitted by Jang, Kijoung (장기정, 수리과학과 2014학번). Congratulations!

Here is his solution of problem 2016-02.

Alternative solutions were submitted by 국윤범 (수리과학과 2015학번, +3), 김동규 (수리과학과 2015학번, +3), 김동하 (기계공학과 2014학번, +3), 이상민 (수리과학과 2014학번, +3), 이시우 (포항공대 수학과 2013학번, +3), 이종원 (수리과학과 2014학번, +3), 정성진 (수리과학과 2013학번, +3), 최대범 (2016학번, +3), 최인혁 (물리학과 2015학번, +3), Muhammaadfiruz Hasanov (2014학번, +3), 이준호 (2016학번, +2). One incorrect solution was submitted.

GD Star Rating
loading...

Solution: 2016-1 Flipping Signs

Prove that for every \( x_1, x_2,\ldots,x_n\in [0,1]\), there exist \(\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_n\in\{1/2,-1/2\}\) such that for all \(k=1,2,\ldots,n-1\), \[ \left\lvert \sum_{i=1}^k \varepsilon_i x_i-\sum_{i=k+1}^n \varepsilon_i x_i \right\rvert\le 1.\]

The best solution was submitted by Lee, Jongwon (이종원, 수리과학과 2014학번). Congratulations!

Here is his solution of problem 2016-1.

Alternative solutions were submitted by 노희광 (화학과 2014학번, +2), 안현수 (2016학번, +2), 이상민 (수리과학과 2014학번, +2), 홍혁표 (수리과학과 2013학번, +2). There were 10 incorrect submissions.

GD Star Rating
loading...

2016-3 Non-finitely generated subgroup

Let \( G \) be a subgroup of \( GL_2 (\mathbb{R}) \) generated by \( \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \) and \( \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \). Let \( H \) be a subset of \( G \) that consists of all matrices in \( G \) whose diagonal entries are \( 1 \). Prove that \( H \) is a subgroup of \( G \) but not finitely generated.

GD Star Rating
loading...

2016-1 Flipping signs

Prove that for every \( x_1, x_2,\ldots,x_n\in [0,1]\), there exist \(\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_n\in\{1/2,-1/2\}\) such that for all \(k=1,2,\ldots,n-1\), \[ \left\lvert \sum_{i=1}^k \varepsilon_i x_i-\sum_{i=k+1}^n \varepsilon_i x_i \right\rvert\le 1.\]

GD Star Rating
loading...

Concluding 2015 Fall

Thanks all for participating POW actively. Here’s the list of winners:

1st prize (Gold): Lee, Jongwon (이종원), 수리과학과 2014학번.
2nd prize (Silver): Park, Sunghyuk (박성혁), 수리과학과 2014학번.
3rd prize (Bronze): Shin, Joonhyung (신준형), 2015학번.
3rd prize (Bronze): Jang, Kijoung (장기정), 수리과학과 2014학번.
3rd prize (Bronze): Choi, Inhyeok (최인혁), 2015학번.

이종원 (수리과학과 2014학번) 37점, 박성혁 (수리과학과 2014학번) 36점, 신준형 (2015학번) 33점, 장기정 (수리과학과 2014학번) 32점, 최인혁 (2015학번) 32점, 이영민 (수리과학과 2012학번) 18점, 박훈민 (수리과학과 2013학번) 17점, 김동률 (2015학번) 10점, 이상민 (수리과학과 2014학번) 8점, 김재준 (2014학번) 6점, 이정환 (2015학번) 6점, 오동우 (2015학번) 5점, 유찬진 (2015학번) 5점, 함도규 (2015학번) 5점, 이신영 (물리학과 2012학번) 4점, 김경석 (2015학번) 3점, 김기택 (2015학번) 3점, 김희주 (2015학번) 2점, 이호일 (수리과학과 2013학번) 2점,  이경훈 (수리과학과 2014학번) 1점.

GD Star Rating
loading...

Solution: 2015-24 Hölder inequality for matrices

Let \( A, B \) are \( n \times n \) Hermitian matrices and \( p, q \in [1, \infty] \) with \( \frac{1}{p} + \frac{1}{q} = 1 \). Prove that
\[
| Tr (AB) | \leq \| A \|_{S^p} \| B \|_{S^q}.
\]
(Here, \(\| A \|_{S^p} \) is the \(p\)-Schatten norm of \( A \), defined by
\[
\| A \|_{S^p} = \left( \sum_{i=1}^n |\lambda_i|^p \right)^{1/p},
\]
where \( \lambda_1, \lambda_2, \dots, \lambda_n \) are the eigenvalues of \( A \).)

The best solution was submitted by Park, Sunghyuk (박성혁, 수리과학과 2014학번). Congratulations!

Here is his solution of problem 2015-24.

Alternative solutions were submitted by 신준형 (2015학번, +3), 이정환 (2015학번, +3), 이종원 (수리과학과 2014학번, +3), 장기정 (수리과학과 2014학번, +3), 김동률 (2015학번, +2), 최인혁 (2015학번, +2).

GD Star Rating
loading...

Solution: 2015-23 Fixed points

Let \(f:[0,1)\to[0,1)\)  be a function such that \[ f(x)=\begin{cases} 2x,&\text{if }0\le 2x\lt 1,\\ 2x-1, & \text{if } 1\le 2x\lt 2.\end{cases}\] Find all \(x\) such that \[ f(f(f(f(f(f(f(x)))))))=x.\]

The best solution was submitted by Park, Sunghyuk (박성혁, 수리과학과 2014학번). Congratulations!

Here is his solution of problem 2015-23.

Alternative solutions were submitted by 김동률 (2015학번, +3), 신준형 (2015학번, +3), 유찬진 (2015학번, +3), 이상민 (수리과학과 2014학번, +3), 이종원 (수리과학과 2014학번, +3, his solution), 장기정 (수리과학과 2014학번, +3), 정호진 (동북고등학교 2학년, +3), 최인혁 (2015학번, +3), Daulet Kurmantayev (?, +3), 최동준 (포항공대 수학과 2013학번, +2).

GD Star Rating
loading...

2015-24 Hölder inequality for matrices

Let \( A, B \) are \( n \times n \) Hermitian matrices and \( p, q \in [1, \infty] \) with \( \frac{1}{p} + \frac{1}{q} = 1 \). Prove that
\[
| Tr (AB) | \leq \| A \|_{S^p} \| B \|_{S^q}.
\]
(Here, \(\| A \|_{S^p} \) is the \(p\)-Schatten norm of \( A \), defined by
\[
\| A \|_{S^p} = \left( \sum_{i=1}^n |\lambda_i|^p \right)^{1/p},
\]
where \( \lambda_1, \lambda_2, \dots, \lambda_n \) are the eigenvalues of \( A \).)

GD Star Rating
loading...