Determine all values of \(a\) and \(b\) such that \[ \sum_{n=1}^\infty \frac{\sin n^a}{n^b}\] converges.
loading...
Determine all values of \(a\) and \(b\) such that \[ \sum_{n=1}^\infty \frac{\sin n^a}{n^b}\] converges.
Let \(k\) be a positive integer. Let \(a_n=1\) if \(n\) is not a multiple of \(k+1\), and \(a_n=-k\) if \(n\) is a multiple of \(k+1\). Compute \[\sum_{n=1}^\infty \frac{a_n}{n}.\]
The best solution was submitted by Choi, Inhyeok (최인혁, 물리학과 2015학번). Congratulations!
Here is his solution of problem 2016-12.
Alternative solutions were submitted by 강한필 (2016학번, +3), 국윤범 (수리과학과 2015학번, +3), 김기택 (수리과학과 2015학번, +3), 김재현 (2016학번, +3), 김태균 (2016학번, +3), 김태형 (EEWS대학원 석사과정, +3), 박찬우 (서울대학교 통계학과 2016학번, +3), 신준형 (수리과학과 2015학번, +3), 오동우 (2015학번, +3), 유찬진 (수리과학과 2015학번, +3), 이정환 (수리과학과 2015학번, +3), 이종원 (수리과학과 2014학번, +3), 임성혁 (2016학번, +3), 장기정 (수리과학과 2014학번, +3), 채지석 (2016학번, +3), 최대범 (2016학번, +3), 한준호 (수리과학과 2015학번, +3), Muhammaadfiruz Hasanov (2014학번, +3), 박기연 (2016학번, +2), 박진호 (물리학과 2015학번, +2), 송교범 (서대전고등학교 3학년, +2), 송민학 (월촌중학교 3학년, +2), 윤준기 (전기및전자공학부 2014학번, +2), 정성진 (수리과학과 2013학번, +2), 이본우 (대구과학고등학교 3학년, +2), 이상민 (수리과학과 2014학번, +2), 이시우 (포항공대 수학과 2013학번, +2). There were 2 incorrect solutions and 2 submissions by email missing attachments.
A rich old man had \( k \) sons and \( N \) camels in the herd. The will of the father stated that his \( r \)-th son should receive \( 1/ N_r\) of his camels for \( r = 1, 2, \dots, k\). Since \( N+1 \) is a common multiple of \( N_1, N_2, \dots, N_k \), the sons could not divided \( N \) camels as their father wished. The sons visited a wise man to solve the issue. The wise man listened about the will, and he brought his own camel, which he added to the herd. The herd was then divided up according to the old man’s wishes. The wise man then took back the one camel that remained, which was his own. For given \( k \), find the maximal number of camels \( N \equiv N(k) \) for which there is a solution to the problem where \( N_1, N_2, \dots, N_k\) are positive integers.
Let \(k\) be a positive integer. Let \(a_n=1\) if \(n\) is not a multiple of \(k+1\), and \(a_n=-k\) if \(n\) is a multiple of \(k+1\). Compute \[\sum_{n=1}^\infty \frac{a_n}{n}.\]
Thanks all for participating POW actively. Here’s the list of winners:
1st prize (Gold): Kook, Yun Bum (국윤범, 수리과학과 2015학번)
2nd prize (Silver): Jang, Kijoung (장기정, 수리과학과 2014학번).
3rd prize (Bronze): Lee, Sangmin (이상민, 수리과학과 2014학번)
3rd prize (Bronze): Lee, Jongwon (이종원, 수리과학과 2014학번).
3rd prize (Bronze): Lee, Junho (이준호, 2016학번).
국윤범 (수리과학과 2015학번), 장기정 (수리과학과 2014학번), 이상민 (수리과학과 2014학번), 이종원 (수리과학과 2014학번), 이준호 (2016학번), 강한필 (2016학번), 유찬진 (수리과학과 2015학번), 윤준기 (전기및전자공학부 2014학번), Muhammaadfiruz Hasanov (2014학번), 김동규 (수리과학과 2015학번), 최백규 (2016학번), 김기택 (수리과학과 2015학번), 조태혁 (수리과학과 2014학번), 김동률 (수리과학과 2015학번), 김태균 (2016학번), 박기연 (2016학번), 최대범 (2016학번), 이정환 (수리과학과 2015학번), 김강식 (포항공대 수학과 2013학번), 김동하 (기계공학과 2014학번), 김재현 (2016학번), 이태영 (2013학번), 장창환 (기계공학과 2015학번), 정성진 (수리과학과 2013학번), 최인혁 (물리학과 2015학번), 김홍규 (수리과학과 2011학번), 노희광 (화학과 2014학번), 안현수 (2016학번), 홍혁표 (수리과학과 2013학번).
For a positive integer \( n \), define \( f(n) \) by
\[
f(n) =
\begin{cases}
0 & \text{ if } n \equiv 0 \pmod{5} \\
1 & \text{ if } n \equiv \pm 1 \pmod{5} \\
-1 & \text{ if } n \equiv \pm 2 \pmod{5}
\end{cases}.
\]
Compute the infinite series
\[
\sum_{n=1}^{\infty} \frac{f(n)}{n} = 1 – \frac{1}{2} – \frac{1}{3} + \frac{1}{4} + \frac{1}{6} – \dots.
\]
The best solution was submitted by Kook, Yun Bum (국윤범, 수리과학과 2015학번). Congratulations!
Here is his solution of problem 2016-11.
Alternative solutions were submitted by 이상민 (수리과학과 2014학번, +3), 박정우 (한국과학영재학교 2016학번, +2), 윤준기 (전기및전자공학부 2014학번, +2), 최백규 (2016학번, +2).
Suppose that \( A \) is an \( n \times n \) matrix with integer entries and \( \det A = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k} \) for primes \( p_1, p_2, \dots, p_k \) and positive integers \( e_1, e_2, \dots, e_k \). Prove that there exist \( n \times n \) matrices \( B_1, B_2, \dots, B_k \) with integer entries such that \( A = B_1 B_2 \dots B_k \) and \( \det B_1 = p_1^{e_1}, \det B_2 = p_2^{e_2}, \dots, \det B_k = p_k^{e_k} \).
The best solution was submitted by Lee, Sangmin (이상민, 수리과학과 2014학번). Congratulations!
Here is his solution of problem 2016-10.
Alternative solutions were submitted by 국윤범 (수리과학과 2015학번, +3), 장기정 (수리과학과 2014학번, +2), 박정우 (한국과학영재학교 2016학번, +2).
For a positive integer \( n \), define \( f(n) \) by
\[
f(n) =
\begin{cases}
0 & \text{ if } n \equiv 0 \pmod{5} \\
1 & \text{ if } n \equiv \pm 1 \pmod{5} \\
-1 & \text{ if } n \equiv \pm 2 \pmod{5}
\end{cases}.
\]
Compute the infinite series
\[
\sum_{n=1}^{\infty} \frac{f(n)}{n} = 1 – \frac{1}{2} – \frac{1}{3} + \frac{1}{4} + \frac{1}{6} – \dots.
\]
(This is the last problem of this semester. Thank you.)
Let \( A=(a_{ij})_{ij}\) be an \(n\times n\) matrix, where \[ a_{ij}=\begin{cases} 3 &\text{if }i=j,\\ (-1)^{\lvert i-j\rvert}&\text{otherwise.}\end{cases}\] Compute the determinant of \(A\).
The best solution was submitted by Jang, Kijoung (장기정, 수리과학과 2014학번). Congratulations!
Here is his solution of problem 2016-9.
Alternative solutions were submitted by 강한필 (2016학번, +3), 국윤범 (수리과학과 2015학번, +3), 김태균 (2016학번, +3), 박정우 (한국과학영재학교 2016학번, +3), 송교범 (서대전고등학교 3학년, +3), 이상민 (수리과학과 2014학번, +3), 이원웅 (건국대 수학과 2014학번, +3), 최백규 (2016학번, +3), 유찬진 (수리과학과 2015학번, +2), 윤준기 (전기및전자공학부 2014학번, +2).
Suppose that \( A \) is an \( n \times n \) matrix with integer entries and \( \det A = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k} \) for primes \( p_1, p_2, \dots, p_k \) and positive integers \( e_1, e_2, \dots, e_k \). Prove that there exist \( n \times n \) matrices \( B_1, B_2, \dots, B_k \) with integer entries such that \( A = B_1 B_2 \dots B_k \) and \( \det B_1 = p_1^{e_1}, \det B_2 = p_2^{e_2}, \dots, \det B_k = p_k^{e_k} \).