Solution: 2016-5 Partition into 4 sets

Let \(A_1,A_2,\ldots,A_n\) be subsets of \(\{1,2,\ldots,n\}\) such that \(i\notin A_i\) for all \(i\). Prove that there exist four sets \(C_1,C_2,C_3,C_4\) such that \(C_1\cup C_2\cup C_3\cup C_4=\{1,2,\ldots,n\} \) and for all \(i\) and \(j\), if \(i\in C_j\), then \( \lvert A_i\cap C_j\rvert \le \frac12 \lvert A_i\rvert\).

The best solution was submitted by Kook, Yun Bum (국윤범, 수리과학과 2015학번). Congratulations!

Here is his solution of problem 2016-5.

Alternative solutions were submitted by 이준호 (2016학번, +2), 김경석 (연세대학교 의예과 2016학번, +2). An incorrect solution was received.

Note: There is a simpler solution.

GD Star Rating
loading...

2016-7 Sum-free

For a set \( A \subset \mathbb{R} \), let \( f(A) \) be the size of the largest set \( B \subset A \) such that \( (B+B) \cap B = \emptyset \). For a positive integer \( n \), let \( f(n) = \min_{0 \notin A, |A|=n} f(A) \). Prove that \( f(n) \geq n/3 \).

GD Star Rating
loading...

Solution: 2016-6 Convex function

Suppose that \( f \) is a real-valued convex function on \( \mathbb{R} \). Prove that the function \( X \mapsto \mathrm{Tr } f(X) \) on the vector space of \( N \times N \) Hermitian matrices is convex.

The best solution was submitted by Kook, Yun Bum (국윤범, 수리과학과 2015학번). Congratulations!

Here is his solution of problem 2016-6.

Alternative solutions were submitted by 이종원 (수리과학과 2014학번, +3), 이준호 (2016학번, +3), 장기정 (수리과학과 2014학번, +3), 유현우 (한양대학교 화학공학과 2013학번, +3), 이시우 (포항공대 수학과 2013학번, +3).

GD Star Rating
loading...

Midterm break

The problem of the week will take a break during the midterm exam period and return on April 29, Friday. Good luck on your midterm exams!

GD Star Rating
loading...

2016-6 Convex function

Suppose that \( f \) is a real-valued convex function on \( \mathbb{R} \). Prove that the function \( X \mapsto \mathrm{Tr } f(X) \) on the vector space of \( N \times N \) Hermitian matrices is convex.

GD Star Rating
loading...

Solution: 2016-4 Distances in a tree

Let \(T\) be a tree on \(n\) vertices \(V=\{1,2,\ldots,n\}\). For two vertices \(i\) and \(j\), let \(d_{ij}\) be the distance between \(i\) and \(j\), that is the number of edges in the unique path from \(i\) to \(j\). Let \(D_T(x)=(x^{d_{ij}})_{i,j\in V}\) be the \(n\times n\) matrix. Prove that \[ \det (D_T(x))=(1-x^2)^{n-1}.\]

The best solution was submitted by Kim, Kee Tack (김기택, 수리과학과 2015학번). Congratulations!

Here is his solution of problem 2016-4.

Alternative solutions were submitted by 강한필 (2016학번, +3), 국윤범 (수리과학과 2015학번, +3), 김강식 (포항공대 수학과 2013학번, +3), 김경석 (연세대학교 의예과 2016학번, +3), 김동률 (수리과학과 2015학번, +3), 김재현 (2016학번, +3), 박기연 (2016학번, +3), 송교범 (서대전고등학교 3학년, +3), 이시우 (포항공대 수학과 2013학번, +3), 이종원 (수리과학과 2014학번, +3), 이준호 (2016학번, +3), 장기정 (수리과학과 2014학번, +3), 조태혁 (수리과학과 2014학번, +3), Muhammaadfiruz Hasanov (2014학번, +3), 김동규 (수리과학과 2015학번, +2), 김홍규 (수리과학과 2011학번, +2), 배형진 (마포고등학교 2학년, +2), 어수강 (서울대학교 수학교육과 박사과정, +2), 유찬진 (수리과학과 2015학번, +2), 윤준기 (전기및전자공학부 2014학번, +2), 이상민 (수리과학과 2014학번, +2), 이정환 (수리과학과 2015학번, +2).

GD Star Rating
loading...

2016-5 Partition into 4 sets

Let \(A_1,A_2,\ldots,A_n\) be subsets of \(\{1,2,\ldots,n\}\) such that \(i\notin A_i\) for all \(i\). Prove that there exist four sets \(C_1,C_2,C_3,C_4\) such that \(C_1\cup C_2\cup C_3\cup C_4=\{1,2,\ldots,n\} \) and for all \(i\) and \(j\), if \(i\in C_j\), then \( \lvert A_i\cap C_j\rvert \le \frac12 \lvert A_i\rvert\).

GD Star Rating
loading...

Solution: 2016-3 Non-finitely generated subgroup

Let \( G \) be a subgroup of \( GL_2 (\mathbb{R}) \) generated by \( \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \) and \( \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \). Let \( H \) be a subset of \( G \) that consists of all matrices in \( G \) whose diagonal entries are \( 1 \). Prove that \( H \) is a subgroup of \( G \) but not finitely generated.

The best solution was submitted by Jo, Tae Hyouk (조태혁, 수리과학과 2014학번). Congratulations!

Here is his solution of problem 2016-3.

Alternative solutions were submitted by 강한필 (2016학번, +3), 국윤범 (수리과학과 2015학번, +3), 김경석 (연세대학교 의예과 2016학번, +3), 김기택 (수리과학과 2015학번, +3), 김동규 (수리과학과 2015학번, +3), 김동률 (수리과학과 2015학번, +3), 송교범 (서대전고등학교 3학년, +3), 어수강 (서울대학교 수학교육과 박사과정, +3), 유찬진 (수리과학과 2015학번, +3), 이시우 (포항공대 수학과 2013학번, +3), 이정환 (수리과학과 2015학번, +3), 이종원 (수리과학과 2014학번, +3), 이준호 (2016학번, +3), 이태영 (2013학번, +3), 장기정 (수리과학과 2014학번, +3), 최대범 (2016학번, +3), Muhammaadfiruz Hasanov (2014학번, +3), 배형진 (마포고등학교 2학년, +2), 이상민 (수리과학과 2014학번, +2).

GD Star Rating
loading...

2016-4 Distances in a tree

Let \(T\) be a tree on \(n\) vertices \(V=\{1,2,\ldots,n\}\). For two vertices \(i\) and \(j\), let \(d_{ij}\) be the distance between \(i\) and \(j\), that is the number of edges in the unique path from \(i\) to \(j\). Let \(D_T(x)=(x^{d_{ij}})_{i,j\in V}\) be the \(n\times n\) matrix. Prove that \[ \det (D_T(x))=(1-x^2)^{n-1}.\]

GD Star Rating
loading...