Find all polynomials P with real coefficients such that P(x)∈Q implies x∈Q.
loading...
Find all polynomials P with real coefficients such that P(x)∈Q implies x∈Q.
POW 2024 spring semester has ended. We apologize for many issues we had experienced this semester. Thank you for your participation, and see you in the fall semester.
Find
sup[∞∑n=11√n(∞∑i=nx2i)1/2/∞∑i=1xi],
where the supremum is taken over all monotone decreasing sequences of positive numbers (xi) such that ∑∞i=1xi<∞.
The best solution was submitted by 김준홍 (KAIST 수리과학과 20학번, +4). Congratulations!
Here is the best solution of problem 2024-10.
There were incorrect solutions submitted.
Find all positive numbers a1,…,a5 such that a1n1+⋯+a1n5 is integer for every integer n≥1.
The best solution was submitted by 권오관 (연세대학교 수학과 22학번, +4). Congratulations!
Here is the best solution of problem 2024-09.
Other solutions were submitted by 김준홍 (KAIST 수리과학과 20학번, +3), 김지원 (KAIST 새내기과정학부 24학번, +3), 박지운 (KAIST 새내기과정학부 24학번, +3), 신정연 (KAIST 수리과학과 21학번, +3), 이명규 (KAIST 전산학부 20학번, +3), 정영훈 (KAIST 새내기과정학부 24학번, +3), 채지석 (KAIST 수리과학과 석박통합과정 21학번, +3), Anar Rzayev (KAIST 전산학부 19학번, +3).
Find
sup[∞∑n=11√n(∞∑i=nx2i)1/2/∞∑i=1xi],
where the supremum is taken over all monotone decreasing sequences of positive numbers (xi) such that ∑∞i=1xi<∞.
Let A be a 16×16 matrix whose entries are either 1 or −1. What is the maximum value of the determinant of A?
The best solution was submitted by 이명규 (KAIST 전산학부 20학번, +4).
Congratulations!
Here is the best solution of problem 2024-08.
Other solutions were submitted by 김준홍 (KAIST 수리과학과 20학번, +3), 김지원 (KAIST 새내기과정학부 24학번, +3), 신정연 (KAIST 수리과학과 21학번, +3), 정영훈 (KAIST 새내기과정학부 24학번, +3), 지은성 (KAIST 수리과학과 20학번, +3), 채지석 (KAIST 수리과학과 석박통합과정 21학번, +3), Anar Rzayev (KAIST 전산학부 19학번, +3), 권오관 (연세대학교 수학과 22학번, +2).
Find all positive numbers a1,…,a5 such that a1n1+⋯+a1n5 is integer for every integer n≥1.
For fixed positive numbers x1,x2,…,xm, we define a sequence {an} by an=xn for n≤m and
an=arn−1+arn−2+⋯+arn−k
for n>m, where r∈(0,1). Find limn→∞an.
The best solution was submitted by 채지석 (KAIST 수리과학과 석박통합과정 21학번, +4). Congratulations!
Here is the best solution of problem 2024-07.
Other solutions were submitted by 김준홍 (KAIST 수리과학과 20학번, +3), 박지운 (KAIST 새내기과정학부 24학번, +3), 정영훈 (KAIST 새내기과정학부 24학번, +3), Anar Rzayev (KAIST 전산학부 19학번, +2), Sasa Sa (+3).
It is found that there is a flaw in POW 2024-05; some students showed that the collection of all Knotennullstelle numbers is not a discrete subset of C. We again apologize for the inconvenience.
To acknowledge the students who reported the flaws in POW 2024-05 and POW 2024-06, we decided to give credits to 김준홍 (KAIST 수리과학과 20학번, +4) and 지은성 (KAIST 수리과학과 20학번, +3) for POW 2024-05 and Anar Rzayev (KAIST 전산학부 19학번, +4) for POW 2024-06.
Here is a “solution” of problem 2024-05.
Let A be a 16×16 matrix whose entries are either 1 or −1. What is the maximum value of the determinant of A?