POW 2024-12

연세대학교 수학과 권오관

(**Problem**) Count the number of distinct matrices *A*, where two matrices are considered identical if one can be obtained from the other by rearranging rows and columns, that have the following properties:

- (1) A is a 7×7 matrix and every entry of A is 0 or 1.
- (2) Each row of A contains exactly 3 non-zero entries.
- (3) For any two distinct rows *i* and *j* of *A*, there exists exactly one column *k* such that $A_{ik} \neq 0$ and $A_{jk} \neq 0$.

(Solution) Notice that the following matrix M satisfies condition (1) ~ (3).

 $M = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \end{bmatrix}$

Indeed, M is the only solution. That is, for any matrix satisfying (1) ~ (3), say B, we can rearrange rows and columns of B to obtain M.

Let *B* be a matrix satisfying $(1) \sim (3)$.

(Notation) $[B]_i$: *i*-th row of *B*. $[B]^j$: *j*-th column of *B*. $B = (b_{i,j})$ ($1 \le i, k \le 7$) S(N) := sum of all entries of matrix *N*.

(observation 1) No column of B has more than 3 non-zero entries.

(pf) Assume that $[B]^1$ has 4 or more non-zero entries. WLOG, assume $b_{1,1} = b_{2,1} = b_{3,1} = b_{4,1} = 1$. Let C be the 4×6 matrix such that

Then, by condition (3), every column of C has at most 1 non-zero entry, thus C has at most 6 non-zero entries. But, by condition (2), C must have 8 non-zero entries. Contradiction! $\therefore [B]^1$ has at most 3 non-zero entries.

Similarly, other columns of B also have at most 3 non-zero entries.

(observation2) Every column of B has 3 non-zero entries.

(pf) Assume that some column of B does not have 3 non-zero entries.

Then,
$$21 = \sum_{i=1}^{7} 3 = \sum_{i=1}^{7} S([B]_i) = S(B) = \sum_{j=1}^{7} S([B]^j) < \sum_{j=1}^{7} 3 = 21$$
. Contradiction.

Since each row and column of *B* has exactly 3 non-zero entries, we can rearrange *B* and obtain the following B' where D, E, F, G are 2×2 matrices.

$$B \sim B' = \begin{bmatrix} 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \\ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \\ 1 \ 0 \ 0 \ 0 \ 1 \ 1 \\ 0 \ 1 \ 0 \\ 0 \ 1 \ 0 \\ 0 \ 1 \ 0 \end{bmatrix}$$

(observation 3) $D, E, F, G \in \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}$

(pf) Notice that S(D), S(E), S(F), S(G) < 3 and S(D) + S(E) + S(F) + S(G) = 8. Then S(D) = S(E) = S(F) = S(G) = 2.

Since D, E, F, G can not have two non-zero entries in the same row or column, we get the desired result.

If
$$D = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, we rearrange B' by exchanging $[B']^4$ and $[B']^5$.
Similarly, if $E = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, we rearrange B' by exchanging $[B']^6$ and $[B']^7$.
Also, if $F = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, we rearrange B' by exchanging $[B']_6$ and $[B']_7$.

Now, we have the following form.

$$B \sim B' \sim B'' = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

If $G = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, then the 4th and 6th rows does not satisfy condition(3). $\therefore G = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and we are done.

$$B \sim B' \sim B'' = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix} = M.$$