Solution: 2024-12 The Triple Match Matrix Challenge

Count the number of distinct matrices \( A \), where two matrices are considered identical if one can be obtained from the other by rearranging rows and columns, that have the following properties:

  1. \( A \) is a \( 7 \times 7 \) matrix and every entry of \( A \) is \( 0 \) or \( 1 \).
  2. Each row of \( A\) contains exactly 3 non-zero entries.
  3. For any two distinct rows \( i\) and \( j\) of \( A\), there exists exactly one column \( k \) such that \( A_{ik} \neq 0 \) and \( A_{jk} \neq 0 \).

The best solution was submitted by 권오관 (연세대학교 수학과 22학번, +4). Congratulations!

Here is the best solution of problem 2024-12.

Other solutions were submitted by 김준홍 (KAIST 수리과학과 석박통합과정, +3), 김찬우 (연세대학교 수학과 22학번, +3), 노희윤 (KAIST 수리과학과 석박통합과정, +3), 양준혁 (KAIST 수리과학과 20학번, +3), 이명규 (KAIST 전산학부 20학번, +3), 정영훈 (KAIST 새내기과정학부 24학번, +3), 채지석 (KAIST 수리과학과 석박통합과정, +3), Eun Kyeol (+3).

GD Star Rating
loading...

2024-13 Concave functions (revisited)

Let \(u_n(t)\), \(n=1,2…\) be a sequence of concave functions on \(\mathbb{R}\). Let \(g(t)\) be a differentiable function on \(\mathbb{R}\). Assume \(\liminf_{n\to\infty} u_n(t) \geq g(t)\) for every \(t\) and \(\lim_{n\to \infty} u_n(0) = g(0)\). Suppose \(u_n'(0)\) exist for \(n=1,2,…\). Compare \(\lim_{n\to \infty} u_n'(0)\) and \(g'(0)\).

GD Star Rating
loading...

2024-12 The Triple Match Matrix Challenge

Count the number of distinct matrices \( A \), where two matrices are considered identical if one can be obtained from the other by rearranging rows and columns, that have the following properties:

  1. \( A \) is a \( 7 \times 7 \) matrix and every entry of \( A \) is \( 0 \) or \( 1 \).
  2. Each row of \( A\) contains exactly 3 non-zero entries.
  3. For any two distinct rows \( i\) and \( j\) of \( A\), there exists exactly one column \( k \) such that \( A_{ik} \neq 0 \) and \( A_{jk} \neq 0 \).

GD Star Rating
loading...

Solution: 2024-11 Rationals from real polynomials

Find all polynomials \( P \) with real coefficients such that \( P(x) \in \mathbb{Q} \) implies \( x \in \mathbb{Q} \).

The best solution was submitted by 양준혁 (KAIST 수리과학과 20학번, +4). Congratulations!

Here is the best solution of problem 2024-11.

Other solutions were submitted by 권오관 (연세대학교 수학과 22학번, +3), 김준홍 (KAIST 수리과학과 석박통합과정, +3), 김찬우 (연세대학교 수학과 22학번, +3), 노희윤 (KAIST 수리과학과 석박통합과정, +3), 이명규 (KAIST 전산학부 20학번, +3), 김지원 (KAIST 새내기과정학부 24학번, +2), 정영훈 (KAIST 새내기과정학부 24학번, +2).

GD Star Rating
loading...

Solution: 2024-10 Supremum

Find
\[
\sup \left[ \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \left( \sum_{i=n}^{\infty} x_i^2 \right)^{1/2} \Big/ \sum_{i=1}^{\infty} x_i \right],
\]
where the supremum is taken over all monotone decreasing sequences of positive numbers \( (x_i) \) such that \( \sum_{i=1}^{\infty} x_i < \infty \).

The best solution was submitted by 김준홍 (KAIST 수리과학과 20학번, +4). Congratulations!

Here is the best solution of problem 2024-10.

There were incorrect solutions submitted.

GD Star Rating
loading...

Solution: 2024-09 Integer sums

Find all positive numbers \(a_1,…,a_{5}\) such that \(a_1^\frac{1}{n} + \cdots + a_{5}^\frac{1}{n}\) is integer for every integer \(n\geq 1.\)

The best solution was submitted by 권오관 (연세대학교 수학과 22학번, +4). Congratulations!

Here is the best solution of problem 2024-09.

Other solutions were submitted by 김준홍 (KAIST 수리과학과 20학번, +3), 김지원 (KAIST 새내기과정학부 24학번, +3), 박지운 (KAIST 새내기과정학부 24학번, +3), 신정연 (KAIST 수리과학과 21학번, +3), 이명규 (KAIST 전산학부 20학번, +3), 정영훈 (KAIST 새내기과정학부 24학번, +3), 채지석 (KAIST 수리과학과 석박통합과정 21학번, +3), Anar Rzayev (KAIST 전산학부 19학번, +3).

GD Star Rating
loading...

2024-10 Supremum

Find
\[
\sup \left[ \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \left( \sum_{i=n}^{\infty} x_i^2 \right)^{1/2} \Big/ \sum_{i=1}^{\infty} x_i \right],
\]
where the supremum is taken over all monotone decreasing sequences of positive numbers \( (x_i) \) such that \( \sum_{i=1}^{\infty} x_i < \infty \).

GD Star Rating
loading...