Solution: 2022-13 Inequality involving sums with different powers

Prove for any \( x \geq 1 \) that

\[
\left( \sum_{n=0}^{\infty} (n+x)^{-2} \right)^2 \geq 2 \sum_{n=0}^{\infty} (n+x)^{-3}.
\]

The best solution was submitted by 김기수 (KAIST 수리과학과 18학번, +4). Congratulations!

Here is the best solution of problem 2022-13.

Another solution was submitted by 김찬우 (연세대학교 수학과, +3).

GD Star Rating
loading...

2022-14 The number of eigenvalues of a symmetric matrix

For a positive integer \(n\), let \(B\) and \(C\) be real-valued \(n\) by \(n\) matrices and \(O\) be the \(n\) by \(n\) zero matrix. Assume further that \(B\) is invertible and \(C\) is symmetric. Define \[A := \begin{pmatrix} O & B \\ B^T & C \end{pmatrix}.\] What is the possible number of positive eigenvalues for \(A\)?

GD Star Rating
loading...

Solution: 2022-12 A partition of the power set of a set

Consider the power set \(P([n])\) consisting of \(2^n\) subsets of \([n]=\{1,\dots,n\}\).
Find the smallest \(k\) such that the following holds: there exists a partition \(Q_1,\dots, Q_k\) of \(P([n])\) so that there do not exist two distinct sets \(A,B\in P([n])\) and \(i\in [k]\) with \(A,B,A\cup B, A\cap B \in Q_i\).

The best solution was submitted by 조유리 (문현여고 3학년, +4). Congratulations!

Here is the best solution of problem 2022-12.

Other solutions were submitted by 박기찬 (KAIST 새내기과정학부 22학번, +3), 김기수 (KAIST 수리과학과 18학번, +3), 신준범 (컬럼비아 대학교 20학번, +3), 이종서 (KAIST 전산학부 19학번, +3).

GD Star Rating
loading...

2022-12 A partition of the power set of a set

Consider the power set \(P([n])\) consisting of \(2^n\) subsets of \([n]=\{1,\dots,n\}\).
Find the smallest \(k\) such that the following holds: there exists a partition \(Q_1,\dots, Q_k\) of \(P([n])\) so that there do not exist two distinct sets \(A,B\in P([n])\) and \(i\in [k]\) with \(A,B,A\cup B, A\cap B \in Q_i\).

GD Star Rating
loading...

Solution: 2022-10 Polynomial with root 1

Prove or disprove the following:

For any positive integer \( n \), there exists a polynomial \( P_n \) of degree \( n^2 \) such that

(1) all coefficients of \( P_n \) are integers with absolute value at most \( n^2 \), and

(2) \( 1 \) is a root of \( P_n =0 \) with multiplicity at least \( n \).

The best solution was submitted by 박기찬 (KAIST 새내기과정학부 22학번, +4). Congratulations!

Here is the best solution of problem 2022-10

GD Star Rating
loading...

2022-11 groups with torsions

Does there exists a finitely generated group which contains torsion elements of order p for all prime numbers p?

Solutions for POW 2022-11 are due July 4th (Saturday), 12PM, and it will remain open if nobody solved it.

GD Star Rating
loading...

Solution: 2022-09 A chaotic election

Let \(A_1,\dots, A_k\) be presidential candidates in a country with \(n \geq 1\) voters with \(k\geq 2\). Candidates themselves are not voters. Each voter has her/his own preference on those \(k\) candidates.

Find maximum \(m\) such that the following scenario is possible where \(A_{k+1}\) indicates the candidate \(A_1\): for each \(i\in [k]\), there are at least \(m\) voters who prefers \(A_i\) to \(A_{i+1}\).

The best solution was submitted by 이명규 (KAIST 전산학부 20학번, +4). Congratulations!

Here is the best solution of problem 2022-09.

Other solutions were submitted by 조유리 (문현여고 3학년, +3), 박기찬 (KAIST 새내기과정학부 22학번, +3), 김기수 (KAIST 수리과학과 18학번, +3), 여인영 (KAIST 물리학과 20학번, +3).

GD Star Rating
loading...