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Roughly, the following proposition gives an answer:

Proposition 1. The unimodular lattice of dimension 4, namely Z4, is unique
up to isomorphism which preserves norms and inner products.

Let A be a symmetric, positive-definite, unimodular matrix. There exists a
decomposition A = BTB where B is a real matrix.

Since A is a real symmetric matrix, it has a diagonalization A = Q−1DQ
where Q is (real) unitary and D is diagonal. Since A is positive definite, every
diagonal entry of D is positive, so one can define D1/2. Taking B = D1/2Q, one
has BT = QTD1/2 = Q−1D1/2 and BTB = Q−1DQ = A.

Let {v1, v2, v3, v4} be columns of B. They can be realized as elements of the
real vector space V = R4 with the usual inner product ⟨v, w⟩ = vTw. Then,
their Gram matrix (⟨vi, vj⟩) is exactly equal to A from their construction.

Define a fundamental mesh Φ of V by

Φ =

{
4∑

i=1

xivi : xi ∈ R, 0 ≤ xi < 1

}
.

Seeing V as the Euclidean space, we can assign the notion of volume to subsets
of V . In this case, the volume of Φ is equal to 1, which is the absolute value of
determinant of the matrix B generated by the basis {vi}. One has the following
invariant notion:

(⟨vi, vj⟩) = BTB

hence vol(Φ) = |det(⟨vi, vj⟩)|1/2.
Let Λ =

⊕4
i=1 Zvi be the integral span of vi; usually this is called a lattice

in V . If every inner product ⟨v, w⟩ is an integer for v, w ∈ Λ, Λ is called integral.
Note that Λ is integral as its Gram matrix is integral. Further for integral lattice
Λ, if the Gram matrix of a basis is of determinant 1, Λ is called unimodular.
Conclude that one can correpond a matrix from S to an unimodular lattice in
R4 using above procedure.

Let X = {v ∈ V : ⟨v, v⟩ ≤ r2} be the ball centered at the origin. Set r = 7
5

(so that ⟨v, v⟩ < 2 for v ∈ X) and claim that X contains a nonzero point of Λ.
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Let 1
2X be the set of elements of X multiplied by 1

2 . If there are two different
points v, w ∈ Λ such that (v + 1

2X) ∩ (w + 1
2X) is nonempty, then there exists

x1, x2 ∈ X such that 1
2x1 + v = 1

2x2 + w hence v − w = 1
2 (x1 − x2). Observe

that 1
2 (x1 − x2) is the center of the segment having x1,−x2 as ends. This point

is contained in X by following properties of X:

• X is central symmetric: if x2 ∈ X, then −x2 ∈ X.

• X is convex: for x1, x2 ∈ X and t ∈ [0, 1], tx1+(1−t)x2 belongs to X. One
may prove this in formal way, but one can easily get convinced recalling
that a ball in the Euclidean space is convex.

Hence we have a nonzero element v − w ∈ X ∩ Λ.
On contrary, assume that there is no such pair. Every v + 1

2X is disjoint to
each other, so the same hold for the intersections with Φ. Hence we have

vol(Φ) ≥
∑
v∈Λ

vol(Φ ∩ (v +
1

2
X)).

Translating Φ ∩ (v + 1
2X) by −v, it has the same volume as (Φ − v) ∩ 1

2X.
Traversing v ∈ Λ, fundamental meshs cover all the space, therefore one has

vol(Φ) ≥
∑
v∈Λ

vol((Φ− v) ∩ 1

2
X) = vol(

1

2
X) =

1

24
vol(X).

Note that the volume of a ball with radius r in 4 dimensional Euclidean space

is 1
2π

2r4. Since 1
24 vol(X) = 2401π2

20000 > 1 = vol(Φ), this case does not happen.
This result is known as Minkowski’s lattice point theorem. ([2], theorem 4.4)

One can apply the same with the hypothesis thatX is central symmetric, convex
and vol(Φ) < 1

2n vol(X).
From above, deduce that X contains a nonzero point of Λ. In particular, X

is the set of vectors with squared norm at most 3/2. As Λ is an integral lattice,
deduce that there exists a nonzero point x1 ∈ Λ such that ⟨x1, x1⟩ = 1.

Let Λ1 be the set of elements of Λ that is orthogonal to x1. Then Λ is the
direct sum of Zx1 and Λ1: For v ∈ Λ, one has v = ⟨v, x1⟩x1 + (v − ⟨v, x1⟩x1)
with ⟨v, x1⟩x1 ∈ Zx1, v − ⟨v, x1⟩x1 ∈ Λ1.

Let V1 be the orthogonal complement of x1. Λ1 is the intersection of V1 and
Λ, and is integrally spanned by vi − ⟨vi, x1⟩x1. Choose a new basis v′2, v

′
3, v

′
4

for Λ1. Then x1, v
′
2, v

′
3, v

′
4 spans Λ. Consider the fundamental mesh of Λ1. Its

volume is the square root of the determinant of (⟨v′i, v′j⟩).
Note that the volume of fundamental mesh of lattice is invariant under the

basis change. Since the norm of x1 is 1, v′2, v
′
3, v

′
4 form a basis of Λ1 in 3 dimen-

sional vector space such that
∣∣det(⟨v′i, v′j⟩)∣∣ = 1. The basis change from {vi} to

x1 and {v′i} can be done by multiplying some integral unimodular matrix. Note
that for a unimodular lattice Λ, if there exists an element x of norm 1 then Λ
is the direct sum of Zx and its complement.

In 3 dimensional space V1, one proceed with the similar argument. Choose
a ball X with radius 7

5 , then
1
23 vol(X) = 343π

750 > 1 hence there exists a nonzero
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vector x2 in Λ1 such that ⟨x2, x2⟩ = 1 by Minkowski’s lattice point theorem. Let
V2 be the orthogonal complement of x1, x2, and Λ2 be the set of points in Λ that
is orthogonal to x1, x2. Λ2 is a unimodular lattice in V2, and the basis change
is done by multiplying an integral unimodular matrix, and so on. Note that
for 2 dimensional unimodular lattice one can apply this Minkowski’s theorem
by observing for a ball X with r = 7

5 that 1
22 vol(X) = 49π

100 > 1. Deduce that

Λ =
⊕4

i=1 Zxi, where {xi} is orthonormal.
One can find an integral basis change from columns of B to an orthonormal

basis {xi}. The integral basis change is of the form of integral combination
of columns of B: there exists an integral unimodular matrix P such that the
columns of BP are xi’s. This implies that BP is an orthogonal matrix so that
PTBTBP = PTAP = I. Deduce that A ∼ I for any A ∈ S, therefore S/ ∼ is
the singleton set. This result also can prove proposition 1.

Note that we cannot use Minkowski’s theorem to find a vector of norm 1 for
dimension n ≥ 5 in this way because the volume of n-ball is not large enough.
Despite of this, there is some non-elementary result that the minimum norm
of an odd unimodular lattice of dimension n is at most 1 + ⌊n

8 ⌋. ([3], corollary
7.10) In fact, this result requires using theta function on lattice and properties
of modular forms. Further, if unimodular lattice is even, then its dimension is
divisible by 8. If one accepts these as facts, we can derive similar results up to
dimension 7.
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