POW 2022-22

2021 \qquad Chae Jiseok

November 22, 2022

Let us define a new sequence $b_{n}=1+\sum_{k=1}^{n} a_{k}^{2}$. Notice that if $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is a sequence of integers, then so is $\left\{b_{n}\right\}_{n \in \mathbb{N}}$. The given formula for $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ asserts that $n a_{n+1}=b_{n}$, hence $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ satisfies the recurrence

$$
b_{n+1}=b_{n}+a_{n+1}^{2}=b_{n}+\frac{b_{n}^{2}}{n^{2}}
$$

This shows that, for $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ to be a sequence of integers, each b_{n} should be divisible by n. Now fix any prime p, and consider the sequence $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ modulo p. Then for $n<p$, from the recurrence relation derived above we should have

$$
\begin{equation*}
b_{n+1} \equiv b_{n}+b_{n}^{2} n^{-2} \quad(\bmod p) \tag{*}
\end{equation*}
$$

which is well-defined as the multiplicative inverse of n modulo p always exists, and

$$
b_{p} \equiv 0 \quad(\bmod p)
$$

However, a direct computation using $(*)$ shows that $b_{43} \not \equiv 0(\bmod 43)$. Therefore, there exists some $n \geqslant 1$ such that a_{n} is not an integer.

The counterexample $p=43$ was found using the following Python 3 code.

```
primes = []
p = 1
while True:
    p += 1
    # find the next prime using sieve of Eratosthenes
    next_prime_found = False
    while not next_prime_found:
        composite = False
        for prev_p in primes:
            if prev_p ** 2 > p:
            break
            if p % prev_p == 0:
                    composite = True
                    break
        if composite:
        p += 1
        else:
            primes.append(p)
            break
    # test if p divides b_p using the recurrence relation
    bn = 2
    for n in range(1, p):
            bn = bn + pow(bn * pow(n, -1, p), 2, p)
    if bn % p != 0:
            print(p)
            break
```

