Define a sequence \( \{ a_n \} \) by \( a_1 = a \) and
\[
a_n = \frac{2n-1}{n-1} a_{n-1} -1
\]
for \( n \geq 2 \). Find all real values of \( a \) such that \( \lim_{n \to \infty} a_n \) exists.
The best solution was submitted by Bonwoo Lee (이본우, 수리과학과 2017학번). Congratulations!
Here is his solution of problem 2018-01.
Alternative solutions were submitted by 강한필 (전산학부 2016학번, +3), 이시우 (포항공대 수학과 2013학번, +3), 이종원 (수리과학과 2014학번, +3), 채지석 (수리과학과 2016학번, +3), 최인혁 (물리학과 2015학번, +3), 한준호 (수리과학과 2015학번, +3), 고성훈 (2018학번, +2), 김태균 (수리과학과 2016학번, +2), 송교범 (고려대 수학과 2017학번, +2), 이재우 (함양고등학교 3학년, +2), 노우진 (물리학과 2015학번) 및 윤정인 (물리학과 2016학번) (+2). Two incorrect solutions were received.
GD Star Rating
loading...