KAIST POW 2018-02

2015XXXX Inhyeok Choi

March 13, 2018

Problem. For $n \geq 1$, let $f(x)=x^{n}+\sum_{k=0}^{n-1} a_{k} x^{k}$ be a polynomial with real coefficients. Prove that if $f(x)>0$ for all $x \in[-2,2]$, then $f(x) \geq 4$ for some $x \in[-2,2]$.

Solution. We consider a sequence of polynomials $\left\{p_{n}\right\}$ defined as

$$
p_{0}(x)=1, p_{1}(x)=x, p_{n+2}(x)=2 x p_{n+1}(x)-p_{n}(x) .
$$

Because of the formula $\cos (n+2) \theta=2 \cos \theta \cos (n+1) \theta-\cos n \theta$, we note that $p_{n}(\cos \theta)=$ $\cos (n \theta)$. Thus, taking $t_{i}=\cos (i \pi / n)$ for $i=0, \cdots, n$, we have $1=t_{0}>t_{1}>\cdots>$ $t_{n}=-1$ and $p_{n}\left(t_{i}\right)=(-1)^{i}$. Note also that $p_{n}(x)$ is a polynomial of degree n with the coefficient of highest term 2^{n-1} for $n \geq 1$. Now we define $q_{n}(x)=2 p_{n}(x / 2)$: it is a monic polynomial of degree n with $2=2 t_{0}>2 t_{1}>\cdots>2 t_{n}=-2$ satisfying $q_{n}\left(2 t_{i}\right)=2(-1)^{i}$. Now, suppose f with $M=\max _{[-2,2]} f<4$ satisfies the condition of the problem. Then, we define $g=f-M / 2$. We have $-2<-M / 2 \leq g(x) \leq M / 2<2$ on $[-2,2]$, so $g\left(2 t_{i}\right)-q_{n}\left(2 t_{i}\right)<0$ for even i and $g\left(2 t_{i}\right)-q_{n}\left(2 t_{i}\right)>0$ for odd i. By intermediate value theorem, there exists s_{1}, \cdots, s_{n} with $2 t_{i-1}<s_{i}<2 t_{i}$ satisfying $g\left(s_{i}\right)-q_{n}\left(s_{i}\right)=0$. However, $g-q_{n}$ is a polynomial of degree less than n, so having n distinct zeroes imply that $g-q_{n}=0$. However, $-2<g(x)<2$ does not hold on $[-2,2]$ in this case, leading to contradiction.

