POW 2018-03

2014**** Lee, Jongwon

Lemma. Let x_{1}, \ldots, x_{n}, y be rational numbers such that there is no relation as

$$
\begin{equation*}
y=r^{2} x_{1}^{a_{1}} \cdots x_{n}^{a_{n}} \tag{1}
\end{equation*}
$$

for some integers a_{1}, \ldots, a_{n} and some rational r. Then, $\sqrt{y} \notin \mathbb{Q}\left(\sqrt{x_{1}}, \ldots, \sqrt{x_{n}}\right)$, i.e. \sqrt{y} cannot be represented as a rational polynomial of $\sqrt{x_{1}}, \ldots, \sqrt{x_{n}}$.

Proof. We shall use mathematical induction on n. If $n=0$, the condition on y is that y is not a square of a rational number. So $\sqrt{y_{i}} \notin \mathbb{Q}$.

Suppose that the statement holds for all numbers $<n$. For $0 \leq i \leq n$, let $K_{i}=\mathbb{Q}\left(\sqrt{x_{1}}, \ldots, \sqrt{x_{i}}\right)$. If $K_{n-1}=K_{n}$, then by induction hypothesis, we have $\sqrt{y} \notin K_{n-1}=K_{n}$.

Now assume that $K_{n-1} \neq K_{n}$ and that $\sqrt{y} \in K_{n}$. Since K_{n} is a degree 2 extension of K_{n-1}, we have

$$
A \sqrt{x_{n}}+B=\sqrt{y}
$$

for some $A, B \in K_{n-1}$. Then,

$$
\left(A^{2} x_{n}+B^{2}-y\right)+2 A B \sqrt{x_{n}}=0
$$

so we should have $A^{2} x_{n}+B^{2}-y=0$ and $2 A B=0$, since otherwise we would have had $K_{n-1}=K_{n}$. If $A=0$, then we have $B^{2}=y$, which contradicts the induction hypothesis $\sqrt{y} \notin K_{n-1}$. If $B=0$, then we have $A^{2} x_{n}=y$, so that $\sqrt{x_{n} y} \in K_{n-1}$. By the (contrapositive of the) induction hypothesis, there must be a relation

$$
x_{n} y=r^{2} x_{1}^{a_{1}} \cdots x_{n-1}^{a_{n-1}}
$$

which is a contradiction to (1). This finishes the proof of the lemma.
Back to the original problem, let E be the set of integers from 1 to n whose exponent of 2 in its prime factorization is even. Then, we have

$$
\sqrt{1}+\cdots+\sqrt{n}=\sqrt{2}\left(\sum_{f \notin E} \sqrt{\frac{f}{2}}\right)+\sum_{e \in E} \sqrt{e}
$$

Since $f / 2 \in E$ for $f \notin E$, if the above value is an integer, we have that

$$
\sqrt{2} \in \mathbb{Q}\left(\sqrt{e_{1}}, \ldots, \sqrt{e_{m}}\right)
$$

where e_{1}, \ldots, e_{m} is just an enumeration of elements of E. But then, it is a contradiction to the lemma since

$$
2=r^{2} e_{1}^{a_{1}} \cdots e_{m}^{a_{m}}
$$

is impossible because the exponent of 2 in the rhs will always be even.

