POW 2018-03

2015xxxx Han, Junho

March 21, 2018

Integers from square roots

Problem. Find all integers n such that $\sqrt{1} + \sqrt{2} + \cdots + \sqrt{n}$ is an integer.

- **Lemma.** For any $Q \in \mathbb{Z}[x]$ and $n \in \mathbb{N}$, $Q(x \sqrt{n})Q(x + \sqrt{n}) \in \mathbb{Z}[x]$. **proof.** If $Q(x) = \sum_{i} a_{i}x^{i}$, then $Q(s)Q(t) = \sum_{i} a_{i}^{2}(st)^{i} + \sum_{i < j} a_{i}a_{j}(st)^{i} (s^{j-i} + t^{j-i})$. Since both $(x - \sqrt{n})(x + \sqrt{n})$ and $(x - \sqrt{n})^{j-i} + (x + \sqrt{n})^{j-i}$ are in $\mathbb{Z}[x]$, so is $Q(x - \sqrt{n})Q(x + \sqrt{n})$. \Box
- **Solution.** n = 1 is a trivial solution. Suppose there exists a solution n > 1 and pick the smallest one. From the lemma, define $\{P_k\} \subseteq \mathbb{Z}[x]$ such that

$$P_0(x) = x \text{ and for } k \ge 1,$$

$$P_k(x) = P_{k-1}\left(x - \sqrt{k}\right) P_{k-1}\left(x + \sqrt{k}\right)$$

This is represented in another way (product of alternating signs) as

$$P_k(x) = \prod_{j=0}^{2^k - 1} \left\{ x + \sum_{i=1}^k (-1)^{\lfloor \frac{j}{2^{i-1}} \rfloor} \sqrt{i} \right\}.$$

Let $S_k = \sum_{i=1}^k \sqrt{i}$ and note that $P_k(S_k) = 0$ for all k. Now we consider minimal polynomial $x^2 - n$ of both \sqrt{n} and $-\sqrt{n}$ over \mathbb{Z} . Since $P_{n-1}(S_n - \sqrt{n}) = 0$ and $S_n \in \mathbb{Z}, x^2 - n | P_{n-1}(S_n - x) \in \mathbb{Z}[x]$.

$$|P_{n-1}(S_n + \sqrt{n})| \ge \prod_{j=0}^{2^{n-1}-1} \left\{ |S_n + \sqrt{n}| - \left| \sum_{i=1}^{n-1} (-1)^{\lfloor \frac{j}{2^{i-1}} \rfloor} \sqrt{i} \right| \right\}$$
$$\ge \prod_{j=0}^{2^{n-1}-1} \left\{ |S_n + \sqrt{n}| - |S_{n-1}| \right\} > 0.$$

However, $P_{n-1}(S_n + \sqrt{n}) \neq 0$. So it's a contradiction. \Box