2012-9 Rank of a matrix

Let M be an n⨉n matrix over the reals. Prove that \(\operatorname{rank} M=\operatorname{rank} M^2\) if and only if \(\lim_{\lambda\to 0}  (M+\lambda I)^{-1}M\) exists.

GD Star Rating
loading...

Solution: 2012-8 Non-fixed points

Let X be a finite non-empty set. Suppose that there is a function \(f:X\to X\) such that \( f^{20120407}(x)=x\) for all \(x\in X\). Prove that the number of elements x in X such that \(f(x)\neq x\) is divisible by 20120407.

The best solution was submitted by Myeongjae Lee (이명재), 2012학번. Congratulations!

Here is his Solution of Problem 2012-8.

Alternative solutions were submitted by Phan Kieu My (전산학과 2009학번, +3), 김태호 (수리과학과 2011학번, +3), 박민재 (2011학번, +3), 서기원 (수리과학과 2009학번, +3), 천용 (전남대 의예과 2011학번, +3), 어수강 (서울대학교 석사과정, +3), 정우석 (서강대학교 2011학번, +3), 박훈민 (대전과학고 2학년, +3). There were 2 incorrect solutions (S. B., S. H.).

GD Star Rating
loading...

Solution of 2012-7: Product of Sine

Let X be the set of all postive real numbers c such that  \[\frac{\prod_{k=1}^{n-1} \sin\left( \frac{k \pi}{2n}\right)}{c^n} \]  converges as n goes to infinity. Find the infimum of X.

The best solution was submitted by Taeho Kim (김태호, 수리과학과 2011학번). Congratulations!

Here is his Solution of Problem 2012-7.

Alternative solutions were submitted by 서기원 (수리과학과 2009학번, +3), 박민재 (2011학번, +3), 조준영 (2012학번, +3), 이명재 (2012학번, +3), 정우석 (서강대 2011학번, +3), 천용 (전남대 의예과 2011학번 +3), 어수강 (서울대학교 석사과정, +2).

GD Star Rating
loading...

2012-8 Non-fixed points

Let X be a finite non-empty set. Suppose that there is a function \(f:X\to X\) such that \( f^{20120407}(x)=x\) for all \(x\in X\). Prove that the number of elements x in X such that \(f(x)\neq x\) is divisible by 20120407.

GD Star Rating
loading...

2012-7 Product of Sine

Let X be the set of all postive real numbers c such that  \[\frac{\prod_{k=1}^{n-1} \sin\left( \frac{k \pi}{2n}\right)}{c^n} \]  converges as n goes to infinity. Find the infimum of X.

GD Star Rating
loading...

Solution: 2012-6 Matrix modulo p

Let p be a prime number and let n be a positive integer. Let \(A=\left( \binom{i+j-2}{i-1}\right)_{1\le i\le p^n, 1\le j\le p^n} \) be a \(p^n \times p^n\) matrix. Prove that \( A^3 \equiv I \pmod p\), where I is the \(p^n \times p^n\) identity matrix.

The best solution was submitted by Minjae Park (박민재), 2011학번. Congratulations!

Here is his Solution of Problem 2012-6.

Alternative solutions were submitted by 서기원 (수리과학과 2009학번, +3), 이명재 (2012학번, +2).

GD Star Rating
loading...

2012-6 Matrix modulo p

Let p be a prime number and let n be a positive integer. Let \(A=\left( \binom{i+j-2}{i-1}\right)_{1\le i\le p^n, 1\le j\le p^n} \) be a \(p^n \times p^n\) matrix. Prove that \( A^3 \equiv I \pmod p\), where I is the \(p^n \times p^n\) identity matrix.

GD Star Rating
loading...

Solution: 2012-5 Iterative geometric mean

For given positive real numbers \(a_1,\ldots,a_k\) and for each integer n≥k, let \(a_{n+1}\) be the geometric mean of \( a_n, a_{n-1}, a_{n-2}, \ldots, a_{n-k+1}\). Prove that \( \lim_{n\to\infty} a_n\) exists and compute this limit.

The best solution was submitted by Gee Won Suh (서기원), 수리과학과 2009학번. Congratulations!

Here is his Solution of Problem 2012-5.

Alternative solutions were submitted by 박민재 (2011학번, +3, Solution), 김태호 (2011학번, +3, Solution), 이명재 (2012학번, +3), 박훈민 (대전과학고등학교 2학년, +3), 윤영수 (2011학번, +2), 조준영 (2012학번, +2), 변성철 (2011학번, +2), 정우석 (서강대학교 자연과학부 2011학번, +2). One incorrect solution was received.

GD Star Rating
loading...