KAIST POW 2012-21

KAIST Myeongjae Lee

(Determinant of a random 0-1 matrix) Let n be a fixed positive integer and let $p \in(0,1)$. Let D_{n} be the determinant of a random $n \times n 0-1$ matrix whose entries are independent identical random variables, each of which is 1 with the probability p and 0 with the probability $1-p$. Find the expected value and variance of D_{n}.

Proof. If x is such a random variable, $E(x)=E\left(x^{2}\right)=p$.
If $n=1, D_{n}=x$. So $E\left(D_{n}\right)=E(x)=p, \operatorname{Var}\left(D_{n}\right)=E\left(x^{2}\right)-E(x)^{2}=p-p^{2}$.
Suppose $n \geq 2$. Then $D_{n}=\sum_{\sigma \in S_{n}} s(\sigma) a_{1 \sigma(1)} \cdots a_{n \sigma(n)}=\sum_{\sigma \in S_{n}} A_{\sigma}$ where $A_{\sigma}=s(\sigma) a_{1 \sigma(1)} \cdots a_{n \sigma(n)}$ and $s(\sigma)$ is a sign of σ.

Since entries are independent, $E\left(A_{\sigma}\right)=s(\sigma) p^{n}$, and

$$
E\left(D_{n}\right)=p^{n} \sum_{\sigma \in S_{n}} s(\sigma)=0
$$

Note that $E\left(A_{\sigma} A_{\tau}\right)=s\left(\tau^{-1} \sigma\right) p^{2 n-i}$ where $i=|\{j \mid \sigma(j)=\tau(j)\}|$. If we take $\phi=\tau^{-1} \sigma \in S_{n}$, this becomes $s(\phi) p^{2 n-i_{\phi}}$ where $i_{\phi}=|\{j \mid \phi(j)=j\}|$ and there are n ! pair of σ, τ for each ϕ.

Then $\operatorname{Var}\left(D_{n}\right)=E\left(D_{n}^{2}\right)-E\left(D_{n}\right)^{2}=E\left(D_{n}^{2}\right)=\sum_{\sigma, \tau \in S_{n}} E\left(A_{\sigma} A_{\tau}\right)=$ $n!\sum_{\phi \in S_{n}} s(\phi) p^{2 n-i_{\phi}}=n!p^{2 n} \sum_{\phi \in S_{n}} s(\phi) p^{-i_{\phi}}$. The summation term is clearly the determinant of a matrix with $1 / \mathrm{p}$ for all diagonals and 1 for others.

To compute this, subtracting 1st row to other rows,

$$
\left|\begin{array}{ccccc}
\frac{1}{p} & 1 & 1 & \ldots & 1 \\
1-\frac{1}{p} & \frac{1}{p}-1 & 0 & \ldots & 0 \\
1-\frac{1}{p} & 0 & \frac{1}{p}-1 & \ldots & 0 \\
\vdots & \vdots & & \ddots & 0 \\
1-\frac{1}{p} & 0 & \vdots & & \frac{1}{p}-1
\end{array}\right|
$$

Pulling out $\frac{1}{p}-1$, and subtracting other rows to 1 st row, it becomes

$$
\left(\frac{1}{p}-1\right)^{n-1}\left|\begin{array}{ccccc}
\frac{1}{p}+n-1 & 0 & 0 & \ldots & 0 \\
-1 & 1 & 0 & \ldots & 0 \\
-1 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & & \ddots & 0 \\
-1 & 0 & \vdots & & 1
\end{array}\right|=n\left(\frac{1}{p}-1\right)^{n-1}+\left(\frac{1}{p}-1\right)^{n}
$$

Therefore, $\operatorname{Var}\left(D_{n}\right)=n!p^{2 n}\left[n\left(\frac{1}{p}-1\right)^{n-1}+\left(\frac{1}{p}-1\right)^{n}\right]$.

