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(Determinant of a random 0-1 matrix) Let n be a fixed positive integer and
let p € (0,1). Let D,, be the determinant of a random n x n 0-1 matrix whose
entries are independent identical random variables, each of which is 1 with the
probability p and 0 with the probability 1 — p. Find the expected value and
variance of D,,.

Proof. If x is such a random variable, E(z) = E(2?) = p.
Ifn=1,D, =z. So E(D,) = E(x) = p, Var(D,,) = E(2?)—E(z)* = p—p®.
Suppose n > 2. Then Dy, = > g $(0)a15(1) "+ Ano(n) = Dges, Ao Where
Ag = 8(0)a15(1) "+ - Gno(n) and s(o) is a sign of .
Since entries are independent, F(A,) = s(o)p™, and

E(Dn)=p" ) s(0) =0
gESy

Note that E(A,A;) = s(t710)p?" =% where i = |{j|o(j) = 7(j)}|. If we take
¢ =170 € S, this becomes s(¢)p**~* where i, = |{j|$(j) = j}| and there
are n! pair of o, 7 for each ¢.

Then Var(D,) = E(D?) — E(D,)? = E(D?) = Yoo res,, E(AsA;) =
nlY s, (@) = nlp?" Y g s(¢)p~". The summation term is clearly
the determinant of a matrix with 1/p for all diagonals and 1 for others.

To compute this, subtracting 1st row to other rows,
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Pulling out % — 1, and subtracting other rows to 1st row, it becomes

%+n—1 0 0 0
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Therefore, Var(D,,) = n!p*® {n (l — 1) + (l — 1) }
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