KAIST POW 2012-19

KAIST Myeongjae Lee
October 16, 2012
(A limit of a sequence involving a square root) Let $a_{0}=3$ and $a_{n}=a_{n-1}+$ $\sqrt{a_{n-1}{ }^{2}+3}$ for all $n \geq 1$. Determine $\lim _{n \rightarrow \infty} \frac{a_{n}}{2^{n}}$.

Proof. Note that $\cot \theta=\cot 2 \theta+\sqrt{\cot ^{2} 2 \theta+1}$ for $0<\theta<\pi / 2$. Since a_{n} is determined by $a_{0}=3=\sqrt{3} \cot \pi / 6$, we get

$$
a_{n}=\sqrt{3} \cot \left(\frac{\pi}{6 \times 2^{n}}\right)
$$

Therefore,

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{2^{n}}=\lim _{n \rightarrow \infty} \frac{6 \sqrt{3}}{\pi} \frac{\pi /\left(6 \times 2^{n}\right)}{\tan \left(\pi /\left(6 \times 2^{n}\right)\right)}=\frac{6 \sqrt{3}}{\pi}
$$

