POW 2012-18

201C

Kim Joo Wan
October 8, 2012

Ler $S=\left\{r_{n} \mid n \in N\right\}$. Let's assume that $x=0 . a_{1,1} a_{2,2} \cdots$ is a rational number. Then, \exists a minimum $N \in \mathbb{N}$ and $\exists T \in \mathbb{N}$ s.t $a_{i, i}=a_{i+T, i+T} \forall i>N$. Now, define a sequence $\left\{x_{n}\right\}$ s.t $x_{n}=0 . b_{1,1} b_{2,2} \cdots$
where

$$
b_{i, i}= \begin{cases}0 & a_{i, i} \neq 0, i \leq N+n \\ 1 & a_{i, i}=0, i \leq N+n \\ 2 & a_{i, i} \neq 2, i>N+n \\ 3 & a_{i, i}=2, i>N+n\end{cases}
$$

It is easy to see that x_{n} 's are all rational numbers.
Morevoer, $x_{n} \notin S$ for all $n \in \mathbb{N}$. But, It is contradiction. Since, S contains all rational numbers except finitely many raional numbers.

