POW 2012-18

2010 Kim Joo Wan

October 8, 2012

Ler $S = \{r_n | n \in N\}$. Let's assume that $x = 0.a_{1,1}a_{2,2}\cdots$ is a rational number. Then, \exists a minimum $N \in \mathbb{N}$ and $\exists T \in \mathbb{N}$ s.t $a_{i,i} = a_{i+T,i+T} \ \forall i > N$. Now, define a sequence $\{x_n\}$ s.t $x_n = 0.b_{1,1}b_{2,2}\cdots$

$$b_{i,i} = \begin{cases} 0 & a_{i,i} \neq 0, i \leq N+n \\ 1 & a_{i,i} = 0, i \leq N+n \\ 2 & a_{i,i} \neq 2, i > N+n \\ 3 & a_{i,i} = 2, i > N+n \end{cases}$$

where $b_{i,i} = \begin{cases} 0 & a_{i,i} \neq 0, i \leq N+n \\ 1 & a_{i,i} = 0, i \leq N+n \\ 2 & a_{i,i} \neq 2, i > N+n \\ 3 & a_{i,i} = 2, i > N+n \end{cases}$ It is easy to see that x_n 's are all rational numbers. Morevoer, $x_n \notin S$ for all $n \in \mathbb{N}$. But, It is contradiction. Since, S contains all rational numbers except finitely many raional numbers. rational numbers except finitely many raional numbers.