There was a condition missing in POW 2024-12, which is that every entry of \( A \) is \( 0 \) or \( 1 \). The condition in the problem is now corrected.
loading...
There was a condition missing in POW 2024-12, which is that every entry of \( A \) is \( 0 \) or \( 1 \). The condition in the problem is now corrected.
Count the number of distinct matrices \( A \), where two matrices are considered identical if one can be obtained from the other by rearranging rows and columns, that have the following properties:
Find all polynomials \( P \) with real coefficients such that \( P(x) \in \mathbb{Q} \) implies \( x \in \mathbb{Q} \).
The best solution was submitted by 양준혁 (KAIST 수리과학과 20학번, +4). Congratulations!
Here is the best solution of problem 2024-11.
Other solutions were submitted by 권오관 (연세대학교 수학과 22학번, +3), 김준홍 (KAIST 수리과학과 석박통합과정, +3), 김찬우 (연세대학교 수학과 22학번, +3), 노희윤 (KAIST 수리과학과 석박통합과정, +3), 이명규 (KAIST 전산학부 20학번, +3), 김지원 (KAIST 새내기과정학부 24학번, +2), 정영훈 (KAIST 새내기과정학부 24학번, +2).
Find all polynomials \( P \) with real coefficients such that \( P(x) \in \mathbb{Q} \) implies \( x \in \mathbb{Q} \).
POW 2024 spring semester has ended. We apologize for many issues we had experienced this semester. Thank you for your participation, and see you in the fall semester.
Find
\[
\sup \left[ \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \left( \sum_{i=n}^{\infty} x_i^2 \right)^{1/2} \Big/ \sum_{i=1}^{\infty} x_i \right],
\]
where the supremum is taken over all monotone decreasing sequences of positive numbers \( (x_i) \) such that \( \sum_{i=1}^{\infty} x_i < \infty \).
The best solution was submitted by 김준홍 (KAIST 수리과학과 20학번, +4). Congratulations!
Here is the best solution of problem 2024-10.
There were incorrect solutions submitted.
Find all positive numbers \(a_1,…,a_{5}\) such that \(a_1^\frac{1}{n} + \cdots + a_{5}^\frac{1}{n}\) is integer for every integer \(n\geq 1.\)
The best solution was submitted by 권오관 (연세대학교 수학과 22학번, +4). Congratulations!
Here is the best solution of problem 2024-09.
Other solutions were submitted by 김준홍 (KAIST 수리과학과 20학번, +3), 김지원 (KAIST 새내기과정학부 24학번, +3), 박지운 (KAIST 새내기과정학부 24학번, +3), 신정연 (KAIST 수리과학과 21학번, +3), 이명규 (KAIST 전산학부 20학번, +3), 정영훈 (KAIST 새내기과정학부 24학번, +3), 채지석 (KAIST 수리과학과 석박통합과정 21학번, +3), Anar Rzayev (KAIST 전산학부 19학번, +3).
Find
\[
\sup \left[ \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \left( \sum_{i=n}^{\infty} x_i^2 \right)^{1/2} \Big/ \sum_{i=1}^{\infty} x_i \right],
\]
where the supremum is taken over all monotone decreasing sequences of positive numbers \( (x_i) \) such that \( \sum_{i=1}^{\infty} x_i < \infty \).
Let \(A\) be a \(16 \times 16\) matrix whose entries are either \(1\) or \(-1\). What is the maximum value of the determinant of \(A\)?
The best solution was submitted by 이명규 (KAIST 전산학부 20학번, +4).
Congratulations!
Here is the best solution of problem 2024-08.
Other solutions were submitted by 김준홍 (KAIST 수리과학과 20학번, +3), 김지원 (KAIST 새내기과정학부 24학번, +3), 신정연 (KAIST 수리과학과 21학번, +3), 정영훈 (KAIST 새내기과정학부 24학번, +3), 지은성 (KAIST 수리과학과 20학번, +3), 채지석 (KAIST 수리과학과 석박통합과정 21학번, +3), Anar Rzayev (KAIST 전산학부 19학번, +3), 권오관 (연세대학교 수학과 22학번, +2).
Find all positive numbers \(a_1,…,a_{5}\) such that \(a_1^\frac{1}{n} + \cdots + a_{5}^\frac{1}{n}\) is integer for every integer \(n\geq 1.\)