Solution: 2017-01 Eigenvalues of Hermitian matrices

Let \( A, B, C \) be \( N \times N \) Hermitian matrices with \( C = A+B \). Let \( \alpha_1 \geq \dots \geq \alpha_N \), \( \beta_1 \geq \dots \geq \beta_N \), \( \gamma_1 \geq \dots \geq \gamma_N \) be the eigenvalues of \( A, B, C \), respectively. For any \( 1 \leq k \leq N \), prove that
\[ \gamma_1 + \gamma_2 + \dots + \gamma_k \leq (\alpha_1 + \alpha_2 + \dots + \alpha_k) + (\beta_1 + \beta_2 + \dots + \beta_k) \]

The best solution was submitted by Sounggun Wee (위성군, 수리과학과 2015학번). Congratulations!

Here is his solution of problem 2017-01.

Alternative solutions were submitted by 강한필 (2016학번, +3), 김태균 (수리과학과 2016학번, +3), 배형진 (마포고 3학년, +3), 오동우 (수리과학과 2015학번, +3), 이시우 (포항공대 수학과 2013학번, +3), 이정환 (수리과학과 2015학번, +3), 장기정 (수리과학과 2014학번, +3), 조태혁 (수리과학과 2014학번, +3), 최대범 (수리과학과 2016학번, +3), 최인혁 (물리학과 2015학번, +3), Huy Tung Nguyen (2016학번, +3), 곽상훈 (수리과학과 2013학번, +3), 이본우 (2017학번, +3), 이태영 (수리과학과 2013학번, +2).

GD Star Rating
loading...

2017-02 Low-degree polynomial

Let \(a_1,a_2,\ldots,a_n\) be distinct points in \(\mathbb R^4\). Does there exist a non-zero polynomial \(P(x_1,x_2,x_3,x_4)\) such that
(1) the degree of \(P\) is at most \(\lceil\sqrt{5} n^{1/4}\rceil\) and
(2) \(P(a_i)=0\) for all \(i=1,2,\ldots,n\)?

GD Star Rating
loading...

2017-01 Eigenvalues of Hermitian matrices

Let \( A, B, C \) be \( N \times N \) Hermitian matrices with \( C = A+B \). Let \( \alpha_1 \geq \dots \geq \alpha_N \), \( \beta_1 \geq \dots \geq \beta_N \), \( \gamma_1 \geq \dots \geq \gamma_N \) be the eigenvalues of \( A, B, C \), respectively. For any \( 1 \leq k \leq N \), prove that
\[ \gamma_1 + \gamma_2 + \dots + \gamma_k \leq (\alpha_1 + \alpha_2 + \dots + \alpha_k) + (\beta_1 + \beta_2 + \dots + \beta_k) \]

GD Star Rating
loading...

Concluding 2016 Fall

Thanks all for participating POW actively. Here’s the list of winners:

1st prize (Gold): Shin, Joonhyung (신준형, 수리과학과 2015학번)
2nd prize (Silver): Jang, Kijoung (장기정, 수리과학과 2014학번).
2nd prize (Silver): Kim, Taegyun (김태균, 수리과학과 2014학번).
2nd prize (Silver): Kook, Yun Bum (국윤범, 수리과학과 2015학번).
3rd prize (Bronze): Lee, Sangmin (이상민, 수리과학과 2014학번).
3rd prize (Bronze): Lee, Jongwon (이종원, 수리과학과 2014학번).

신준형 (수리과학과 2015학번) 32, 장기정 (수리과학과 2014학번) 31, 김태균 (2016학번) 30, 국윤범 (수리과학과 2015학번) 29, 이상민 (수리과학과 2014학번) 19, 이종원 (수리과학과 2014학번) 19, 최대범 (2016학번) 16, 윤준기 (전기및전자공학부 2014학번) 14, 최인혁 (물리학과 2015학번) 13, 채지석 (2016학번) 12, 김재현 (2016학번) 11, 이정환 (수리과학과 2015학번) 9, Ivan Adrian Koswara (전산학부 2013학번) 6, 강한필 (2016학번) 6, 위성군 (수리과학과 2015학번) 6, 김기택 (수리과학과 2015학번) 6, 박기연 (2016학번) 5, 한준호 (수리과학과 2015학번) 5, 조준영 (수리과학과 2012학번) 3, 박현준 (물리학과 2014학번) 3, 오동우 (2015학번) 3, 유찬진 (수리과학과 2015학번) 3, 임성혁 (2016학번) 3, Muhammaadfiruz Hasanov (2014학번) 3, 정의현 (수리과학과 2015학번) 2, 박진호 (물리학과 2015학번) 2, 정성진 (수리과학과 2013학번) 2.

GD Star Rating
loading...

Solution: 2016-23 Inequality on complex numbers

Suppose that \( z_1, z_2, \dots, z_n \) are complex numbers satisfying \( \sum_{k=1}^n z_k = 0 \). Prove that
\[
\sum_{k=1}^n |z_{k+1} – z_k|^2 \geq 4 \sin^2 \left( \frac{\pi}{n} \right) \sum_{k=1}^n |z_k|^2,
\]
where we let \( z_{n+1} = z_1 \).

The best solution was submitted by Kim, Taegyun (김태균, 2016학번). Congratulations!

Here is his solution of problem 2016-23.

Alternative solutions were submitted by 신준형 (수리과학과 2015학번, +3), 장기정 (수리과학과 2014학번, +3, alternative solution), 국윤범 (수리과학과 2015학번, +3), 김기현 (수리과학과 대학원생, +3, alternative solution), 이상민 (수리과학과 2014학번, +2). One incorrect solution was submitted.

GD Star Rating
loading...

Solution: 2016-22 Computing the Determinant

Let \(M_n=(a_{ij})_{ij}\) be an \(n\times n\) matrix such that \[a_{ij}=\binom{2(i+j-1)}{i+j-1}.\] What is \(\det M_n\)?

The best solution was submitted by Koon, Yun Bum (국윤범, 수리과학과 2015학번). Congratulations!

Here is his solution of problem 2016-22.

Alternative solutions were submitted by 신준형 (수리과학과 2015학번, +3), 장기정 (수리과학과 2014학번, +3), 이상민 (수리과학과 2014학번, +3), 채지석 (2016학번, +3), 이시우 (포항공대 수학과 2013학번, +3), 홍진표 (서울대학교 재료공학부 2013학번, +3).

GD Star Rating
loading...

2016-23 Inequality on complex numbers

Suppose that \( z_1, z_2, \dots, z_n \) are complex numbers satisfying \( \sum_{k=1}^n z_k = 0 \). Prove that
\[
\sum_{k=1}^n |z_{k+1} – z_k|^2 \geq 4 \sin^2 \left( \frac{\pi}{n} \right) \sum_{k=1}^n |z_k|^2,
\]
where we let \( z_{n+1} = z_1 \).

GD Star Rating
loading...

Solution: 2016-21 Bound on the number of divisors

For a positive integer \( n \), let \( d(n) \) be the number of positive divisors of \( n \). Prove that, for any positive integer \( M \), there exists a constant \( C>0 \) such that \( d(n) \geq C ( \log n )^M \) for infinitely many \( n \).

The best solution was submitted by Kim, Taegyun (김태균, 2016학번). Congratulations!

Here is his solution of problem 2016-21.

Alternative solutions were submitted by 신준형 (수리과학과 2015학번, +3), 장기정 (수리과학과 2014학번, +3, alternative solution), 국윤범 (수리과학과 2015학번, +3), 이상민 (수리과학과 2014학번, +3), 윤준기 (전기및전자공학부 2014학번, +3), 이정환 (수리과학과 2015학번, +3), Ivan Adrian Koswara (전산학부 2013학번, +3), 조준영 (수리과학과 2012학번, +3), 이시우 (포항공대 수학과 2013학번, +3).

GD Star Rating
loading...