KAIST POW 2017-18 : Limit

Ki Joung Jang

October 29, 2017

Let $\epsilon>0$. From the definition of the limit, there exists $N \in \mathbb{R}$ that

$$
2-\epsilon<f(x)+f^{\prime}(x)<2+\epsilon
$$

holds for all $x>N$.
Now for every $x>N, f(x)<2-2 \epsilon$ implies $f^{\prime}(x)>\epsilon$: if there exists $x_{0}>N$ that $f\left(x_{0}\right)<2-2 \epsilon$, Then there exists $x_{1}>N$ that $f\left(x_{1}\right)=2-2 \epsilon$, since otherwise $f(x)<2-2 \epsilon$ hence $f^{\prime}(x)>\epsilon$ for every $x>x_{0}$ then f diverges to infinity, which implies a contradiction. Then we may show following lemma.

Lemma 1. $f(x) \geq 2-2 \epsilon$ for all $x \geq x_{1}$.
Proof. Suppose not. then there exists $x_{2}>x_{1}$ that $f\left(x_{2}\right)<2-2 \epsilon$. Then f has lower bound $f\left(x_{3}\right)$ in the compact interval $\left[x_{1}, x_{2}\right.$]: if $f\left(x_{3}\right) \leq f\left(x_{2}\right)$ and $x_{3} \neq x_{2}$, then $f^{\prime}\left(x_{3}\right)=0$ and $f\left(x_{3}\right)<2-2 \epsilon$ hence their sum is clearly smaller than $2-\epsilon$. Only possible case is the case that $f\left(x_{2}\right)$ is minimum at that interval, but in that case $f^{\prime}\left(x_{2}\right)$ should be nonpositive hence the sum still lies below $2-\epsilon$.

Hence we have $\liminf _{x \rightarrow \infty} f(x) \geq 2-2 \epsilon$ if such x_{0} exists. But $\liminf _{x \rightarrow \infty} f(x) \geq 2-2 \epsilon$ holds if such x_{0} does not exist, since then $f(x) \geq 2-2 \epsilon$ for all $x>N$.

By same argument we can show that $\lim _{\sup _{x \rightarrow \infty}} f(x) \leq 2+2 \epsilon$. Taking $\epsilon \rightarrow 0^{+}$implies the answer : the limit of f exist and its value equals 2 .

